您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 其它文档 > Lattice Gases and Cellular Automata
comp-gas/99050015May1999LatticeGasesandCellularAutomataBruceM.BoghosianCenterforComputationalScience,BostonUniversity,3CummingtonStreet,Boston,MA02215,U.S.A.Electronicmail:bruceb@bu.eduWebpage: brucebAbstractWereviewtheclassofcellularautomataknownaslatticegases,andtheirap-plicationstoproblemsinphysicsandmaterialsscience.Thepresentationisself-contained,andassumesverylittlepriorknowledgeofthesubject.Hydrodynamiclatticegasesareemphasized,andnon-lattice-gascellularautomata{eventhosewithphysicalapplications{arenottreatedatall.Webeginwithareviewoflatticegasesasthetermisunderstoodinequilibriumstatisticalphysics.Wethendiscussthevariousmethodsthathavebeenproposedtosimulatehydrodynamicswithalatticegas,leadinguptothe1986discoveryofalatticegasfortheisotropicNavier-Stokesequations.Finally,wediscussvariantsoflattice-gasmodelsthathavebeenusedforthesimulationofcomplex uids.Keywords:Cellularautomata,latticegases,hydrodynamics,discretekinetictheory,Isingmodel,complex uids,microemulsions1HistoricalBackground1.1TheIsingModelTheuseoflatticegasesforthestudyofequilibriumstatisticalmechanicsdatesbacktoa1920paperofLenz[1]inwhichheproposedtomodelaferromagnetbyaregularD-dimensionallatticeLoftwo-state\spins.Physically,thesemaybethoughtofasthemagnetizationvectorsofelementalmagneticdo-mains,andthemodelconstrainsthemtopointinoneoftwodirections,say\upand\down.Foratwo-dimensionallattice,thisisillustratedschemati-callyinFig.1.Mathematically,thestateofthesystemcanbedescribedbythecollectionofvariablesS(x),indexedbythelatticepointsx2L,andtakingPreprintsubmittedtoElsevierPreprint6May1999Fig.1.D=2Isingmodel:Ateachlatticepointthereisaspin,representedherebyanarrow,pointingeitherupordown.theirvaluesfromthesetf 1;+1g;hereS(x)=+1meansthatthespinatsitexispointingup,andS(x)= 1meansthatitispointingdown.IfwesupposethatthelatticehasatotalofN jLjsites,thenthetotalnumberofpossiblestatesofthesystemis2NTousethesespinsasamodelofferromagnetism,itwasnecessarytoassignanenergytoeachofthese2Nstates,insuchawayastomakeitenergeticallyfavorableforeachspintoalignwithanexternallyappliedmagnetic eld ,andforneighboringspinstoalignwitheachother.The rstofthesegoalsisachievedbyincludinganenergycontribution S(x)foreachspinpresent,andthesecondbyincludinganenergycontributionJS(x)S(y)foreachpairofneighboringsitesxandy.Thus,thefullenergyofthesystemisH(S)= XxS(x) J2XxXy2N(x)S(x)S(y);whereN(x)denotesthesetofsitesneighboringsitex,andthefactorof1=2infrontofthesecondtermpreventsdouble-countingofthepairsofspins.Tousethistostudytheequilibriumpropertiesofaferromagnet,itisnecessarytocomputethepartitionfunctionZ(K;h) limN!1XSexp H(S)kBT#;2whereTisthetemperature,K J=(kBT),h =(kBT),thesumoverSincludesall2Npossiblestatesofthesystem,andwehavetakenthethermo-dynamiclimitbylettingthenumberofspinsgotoin nity.LenzposedtheproblemofcalculatingthisquantitytohisstudentIsing,whosolveditforaone-dimensionallatticeofspinsin1925[2].WhileIsing’sD=1solutioniselementary,Onsager’sD=2solutionforh=0requiredalmostanothertwentyyears[3]tocomplete,andissigni cantlymorecomplicated.ThesolutionforthecriticalexponentsforD=2withh6=0isamuchmorerecentdevelopment, rstpublishedbyZamalodchikov[4]in1989.TheproblemforD=3isoutstanding,evenforh=0.1.2UniversalityandMaterialsScienceOnemightwonderwhysomuche orthasbeendevotedtotheIsingmodelwhenitisclearlyonlyacrudeidealizationofarealferromagnet.Certainly,nobodyexpectsthedetailedfunctionalformof,say,thedependenceoftheIsingmodel’smagnetizationM(K;h)=PNxS(x)exph H(x)kBTiPNxexph H(x)kBTi=@lnZ(K;h)@honthetemperatureTtobevalidforanyrealmaterial.Thereare,however,goodreasonstobelievethatcertainfeaturesofthisfunctionalformareuni-versal{thatis,model-independent.Thisisparticularlytruenearcriticality(intheD=2andD=3Isingmodels),wherethespin-spincorrelationlengthdiverges,and uctuationsatalllengthscalesarepresent.Forexample,atzeroapplied eldandnearcriticality,themagnetizationvariesasM=8:0forTTcM0(Tc TTc) forT Tc;whereTcisthecriticaltemperature,M0isaproportionalityconstant,and isanexampleofwhatiscalledacriticalexponent.Thescaleinvarianceofthe uctuationsatthecriticalpointallowarenormalizationgrouptreatmentwhichindicatesthatthecriticalexponentshouldberatherinsensitivetotheparticularmodelHamiltonianused.Infact,criticalexponentsshoulddependononlythedimensionalityofthespaceandthesymmetriesoftheunderlyingHamiltonianfunction.Forexam-ple,theunmagnetizedIsing-modelHamiltonianisinvariantunderthesymme-3trygroupZ2{thatis,multiplicationinthesetf 1;+1g{becausetheenergyisinvariantundertheinversionofallthespinsinthesystem.SystemswithZ2symmetryareexpectedtohave =1=8inD=2,and 0:33inD=3.Arelatedlatticespinmodel,calledtheHeisenbergmodel,endowseachspinwithavectororientationinthreedimensionsandhasaninteractionHamiltonianthatdependsonlyondotproductsofthesevectorsatneighboringsites.SincetheseareinvariantunderthecontinuousgroupofSO(3)rotations,wemightexpectadi erentcriticalexponentfor ,andinfactthisisthecase: 0:36fortheD=3Heisenbergmodel.Thus,universalityteachesusthatitispossibletolearnsome\realph
本文标题:Lattice Gases and Cellular Automata
链接地址:https://www.777doc.com/doc-3126082 .html