您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 公司方案 > 非周期信号激励下的系统的响应
1.付立叶积分法概述)(Rf(t)system)(F)(tr)(HdeHFtrFHRdtetfFtjtj)()(21)()()()()()(例:一个稳定的直流电压和一个接通的直流电压,在时域中的表达式不同,在频域中频谱分布也不同。图示如下:2.怎样理解付立叶变换法可以分析系统的瞬态响应?f(t)=EE)(2jEf(t)=Eu(t)E)1)((jEtt00003.用付立叶变换求Z.S.R.(1).依据:线性系统的迭加原理和正弦稳态响应的相量法(2).步骤:a.dtetutfjFtj)()()(求b.求转移函数)()()(jFjRjHc.列出输出端所求响应的频谱函数)()()(jFjHjRd.求R(jw)的傅立叶反变换dejHjFtrtj)()(21)()()()]([)()()()()()()()()()(1][)()(jjjRtgjFjHjRejFjHjRejHjHejFjFjjj设4.说明a.H(jW)象一个对不同频率的加权函数。b.如果激励信号是能量信号,则响应也是能量信号。222)()()(jFjHjR三矩形脉冲信号通过RC电路的Z.S.R1.RC低通滤波器对阶跃信号的响应的求取)(.*tuc]1)([)(.jEtEua统的转移函数求联系响应与激励的系.bjcjRcjjkjHc111)()(RC设Eu(t)u(t)arctgjj)(RC+_10.7071H(jw)2211)(jH045090当)(,1jHc为最大值的c,21称为截止角频率,称系统的通频带。相频特性的绝对值随w的增大而单调增大。)(,1jHc,1当;450j当;900j)1(11)(]11][1)([)()()(.jcjjjEjjjEjKjEjuCccUc1(t)Uc2(t):时)0(cD.对输出频谱函数uc(jw)进行付立叶反变换012121)(2)(21djEedejEtuEtutjtjcc注意:对于上式右边第一个积分,在积分路径上,有一个实数极点w=0,so积分必须用极限的方法.)(]11[1)()sgn(2112)sgn(1tuEejFjtuetEjEjttt)()1()()]sgn(2121[)()sgn(2121)()()(11121tueEtuEettuEetEEtutututttE(jw)u(t)EwtH(jw)11wwE1Sgn(t)的频谱2单边指数信号的频谱2.RC高通滤波器的阶跃响应:)(11)(]1)([)(RCjjcjRRjHjjEjEREu(t)uR(t)1]1)(][1[)()()(jEjjjjEjEjHjR)()(1tUEetUtRCREtU(t)E(jw)H(jw)UR(t)UR(jw)3.矩形脉冲信号通过RC电路的z.s.rte(t)E)]()([)(tutuEteEe(t)tEt)(tuRttE)(tuct)()1()()1()()()()(0(0)(00tueEtueEtutuEetuEetuttcttR?)(,2,1,2,1.*2121tiFCFCRRba试求:响应电流所示系统,已知:所示激励信号作用于图图vte)(110ta图)(te1R2R2C1C)(tib图)1](1)([)()1()()(:jejjEtutute解函数为:联系响应与激励的转移2221112211/1/1/1/11/111)(cjRcjcjRRcjRcjRjH2/122112/121111jjjjj3132)63)(36()63)(14(361422jjjjj)()()(HEI)1)(3/1)(3132)(32()1)(1)()[3132(jjejjejj)]([)(1IFti0)](32[)(1jF的抽样性质根据)}1](3/1)(3132{[)(1jejFtiAtttututi)]1()([32)]1()([31)(解:)1(1)()()()(1)(1)(1)(321321sTsTeTSsHsHsHsHSsHTsHesH延时TX(t)T1tdttdtY(t))(1sH)(2sH)(3sH)(1ty)(2ty)(3ty125.311pTTTTtuTttutTtuTtttuTeeeTsLeTsesLsHsxLtyestxLsxtututxTsssTsTss)]()()()()()()([1]1(1[)]1(1)1(1[)]()([)()1(1)]([)()()()()(2111则三种情况下的响应如图所示X(t)x(t-T)X(t)x(t-T)TT+T+T+T+T+T+T+T+T+TTTTTTT=(1)(2)(3)TTTT2T由三种情况下所得到的结果可得出:当时,响应失真小,其它二种都产生失真。现从系统结构框图来说明这个问题:信号经后为,当T很小时相当于微分即H1H2级联相当于一个微分电路,再经过H3积分电路后,就可恢复原信号,而,不满足构成微分电路的条件,因此产生失真。TTTTTT21HHTTtxtx)()(例:已知网络的输入电压为三角波,若要完全滤除输出电压U0(t)中幅度最大的两分量,其中c1=1mf,L2=1h问L1,C2应多大?tU(t)1-1-T/2T/2TL1c1c2L2U0(t)解:先将U(t)展开为付立叶级数,从中找出幅度最大的两个频率分量,使输出U0(t)完全滤除此二个分量,必须使L1C1并联回路,L2C2串联回路分)1.0(:sT已知别对此二个频率发生并联谐振和串联谐振即可求出L1和C2。本题有两组解:)(tf4tT2-T4t44TtT434TtTf(t)既是奇函数,又是奇谐函数。仅对T/4求解即可。4040sin48sin)(8TTntdtntTTtdtntfTb22)(8)(8nn;n=1,5,9----;n=3,7,11---f(t)的付立叶展开式为sradsradfHzfsTttttf603202101.0)5sin513sin31(sin8)(222网络均能滤去幅度最大的基波和三次谐波得由LC1fLCHCL7.277710601)3(15.21020111222232121HCLfLC27.010601)3(1025.01020113212112222或串联谐振,或者相反。发生对发生并联谐振,而对当32211CLCL已知系统函数jjH11)(,激励e(t)=t[u(t)-u(t-1)]试利用付立叶分析法求响应r(t).解:)]1()1()1()([))]1()(([)]([)()()()()]([)(tututttuFtututFteFjEjEjHjRtrFR设则而又2'1)(]1)([)]([1)()()()]([jdjdjttuFjjtudjdFjttfF又根据延时特性)()()()0()()(1)(1)(1)(]1)([]1)([1)()(2'2'2'2'jjjjjjejtfttfejeeejjejjejjjEj)()(')(')()0(')(')0()(')(jejtftfttfj又jjejejj1)(]1)()([1)(2'2'2222111)1)1((111)()()()1)1((1)(jejejEHRjejEjjj)(1)1)(1)('(111)1(11122jejjjejjj))((进行配方得出对jR)]1()()[1()()()1()1()()()]([)(1tututtuetututttutuejwRFtrttEejEdejEtutjtjc211211)(21)(01)()1()()1()()()()()()(tueEtueEtutuEetuEetuttcttRjjejejjE1)(]1)()([1)()(2'2')1(1111222jjjjejeeje)()1)(()()()('''jjejjej
本文标题:非周期信号激励下的系统的响应
链接地址:https://www.777doc.com/doc-3132331 .html