您好,欢迎访问三七文档
当前位置:首页 > 高等教育 > 其它文档 > 养殖水域生态学-11
第十一章海洋渔业资源的科学管理学习目的掌握可更新自然资源的特点、持续产量和最大持续产量的概念;了解传统渔业资源管理模式及有关的持续产量模型、动态库模型,明确传统渔业资源管理模式的局限性;掌握大海洋生态系的基本概念和管理目标,了解生态系统动力学基本理论及其对海洋生物资源开放利用和管理的意义,了解海洋增养殖业的基本原理和实践上存在的问题。第一节传统的渔业资源管理模式一、持续产量和最大持续产量的原理(一)持续产量和最大持续产量持续产量(sustainableyield)就是在生态环境基本稳定的条件下,每年从该种群资源中捕捞一定的数量而不影响资源量继续保持在一定的水平上,这种渔获量可以年复一年的获得就称为持续产量或平衡渔获量也称剩余产量。一个渔业种群生物量的自然增长量(dB/dt,即种群剩余生产部分)与种群大小(B)有关。当种群生物量处于极低水平(B≈0)或达到最大(B=B∞)时,dB/dt为零;当种群为中等大小时,dB/dt最大图11.l种群大小与渔业产量关系示意图B为种群生物量,B∞为最大种群生物量(引自Pitcher&Hart1982)最大持续产量置换线“剩余生产部分”=持续产量B∞B2B1在每一生物量水平上(低于环境最大负载量)都有一个持续产量最大持续产量(maximumsustainableyield,MSY):海洋渔业资源科学管理的目标捕捞力量或称捕捞努力量(fishingeffect)通常是指特定时间内投入渔业的捕捞生产工具设备的数量和强度,网目大小则与种群中被捕捞的年龄有关。(二)捕捞力量、网目大小与持续产量的关系捕捞力量f平衡渔获量Ycab图11.2不同种类的总渔获量和捕捞力量的关系pnm平衡渔获量Y捕捞力量f0图11.3同一种类不同网目的捕捞力量和总渔获量的关系0如果捕捞量超过种群本身的自然增长能力,将导致资源量不断下降,表现在总渔获量和单位捕捞力量渔获量随捕捞力量的增加而减少,同时捕捞对象的自然补充量也不断下降,引起资源衰退(甚至最终形成不了渔汛)。生物学捕捞过度:①生长型捕捞过度:过度捕捞小个体②补充型捕捞过度:过度捕捞亲体经济学捕捞过度(三)过度捕捞(overfishing)有关渔业管理的数学模型很多,其目的均为在可持续利用的前提下,尽可能获得最大产量。剩余产量模型为其中较为简单一种,其特点是只考虑产量因素。1.在未开发利用的情况下种群增长模式可表达为:dB/dt=rB[(B∞-B)/B∞]上式为抛物线图形二、持续产量模型(sustainableyieldmodel)0B∞/2B∞dB/dt图11.4未开发利用时自然增长率与生物量的关系要使dB/dt达到最大值,只要对其求导并令其为零:d2B/dt2=rB∞-2rB=0,得:B=B∞/2时增长速率最快2.在开发利用的情况下,种群的增长速率还受捕捞的影响设捕捞死亡系数为F,则:dB/dt=rB[(B∞-B)/B∞]-FB(F:捕捞死亡系数)假设捕捞死亡系数F与捕捞力量f成直线正比,即F=qf(q:可捕系数)dB/dt=rB(B∞-B)/B∞-qfBqfB=rB-rB2/B∞时,dB/dt=0,种群生物量不变,达持续产量或平衡渔获量,以Y表示。持续产量模型:Y=fqB=rB-rB2/B∞(表示平衡状态下渔获量与种群生物量呈抛物线关系,此外Y有多个)由于实际现存的生物量难以确定,将Y-B关系转换为Y-f关系:由Y=fqB=rB-rB2/B∞,得:B=B∞-fqB∞/r,代入上式得:Y=fqB=fq(B∞-fq/r)=(qB∞)f-(q2B∞/r)f2表明在平衡状态下,平衡渔获量与捕捞力量亦呈抛物线关系。设a=qB∞,b=q2B∞/r即Y=af-bf2或Y/f=a—bf表明平衡状态下,单位捕捞力量渔获量与捕捞力量为线性关系。3.MSY与fMSY由Y=af-bf2求Y最大值,须令dY/df=a—2bf=0得:f=fMSY=a/2b=rB∞/2q,MSY=a2/4b=rB∞2/4只要算得参数a、b就可计算得MSY及其相应的fMSY4、参数估算(1)f标准化:用于当量计算标准船、作业时间、网次(2)估算原理:根据平衡状态下单位捕捞力量渔获量与捕捞力量为线性关系,进行直线回归①如果获得平衡状态下的第i年平衡渔获量Yi及其相应的捕捞力量fi的资料。可根据Yi/fi=a—bfi进行回归应用上的主要问题:Yi与fi是否处于平衡状态难以确定,可能出现f不断变化,难以达稳定或f一直不变,始终处于一点平衡的状况。②“一年滞后法”原理:种群在外来压力下,有恢复到平衡状态的能力或趋势Y(i+1)/f(i+1)=a—bfi③“一年滞后法”的推广5、评述:优点:不需要鉴定研究对象的年龄、生长率、出生率、死亡率和补充率等参数,只要有多年的渔获量和捕捞力量资料,即可满足计算要求,简便,适合一些生活史短,年龄鉴定困难的种类。缺点:不易获得数据;人为与自然因素影响较多。动态库模型把种群作为个体的总和,处于连续的补充、生长与死亡之中,通过分析这些因素与人类捕捞的关系,作出模型,指导捕捞。又称为单位补充群体产量模型。(一)同龄群体在生命周期中的数量和生物量变动原因:平衡状态下,一个种群一年内提供的渔获量等于一个同龄群体一生所提供的渔获量。对某一鱼类种群中的同龄群体,其一生中的数量因死亡随年龄增加而减少;各年龄组的平均体重由于生长随年龄的增加而增加到最大体重。生物量(数量乘以个体平均重量)呈开始增加,至最大值后又逐渐下降的过程,同龄群体在其生命周期中所能提供的捕捞量也随之不断变化。三、动态库模型(dynamicpoolmodel)图11.5鱼类种群同龄群体在其生命期间数量和重量的变化同龄群体总体重最大体重(W∞)数量或重量补充年龄(tr)捕捞年龄(tc)年龄(t)通过分析补充、生长与死亡选择何时抓,捕捞力量多大。设某一时期初资源重量为P1,这一时期末资源重量为P2,则:P2=P1+(R+G)-(F+M)R:因繁殖增加的资源量(补充量),G:因生长而增加的重量,F:因捕捞而减少的生物量,M:因自然死亡而减少的生物量。要维持持久产量,就要使这种群保持平衡,即P2=P1,必须:R+G=F+M在资源未利用时期内,生产量和补充量与自然死亡相平衡。当开始利用资源时还要考虑捕捞造成的死亡损失。(二)补充量tr为进入补充群的年龄(人为确定),tc为开始被捕捞的年龄(网目大小),tλ为该鱼种群的最大年龄。tc-tr=ρtλ-tc=λ由于补充量预报困难,在动态库模型中,主要是研究单位补充渔获量(Y/R)模型,而不是产量(Y)模型。即估算单位补充最大持续产量MYR(maximumyield/recruit),而不是最大持续产量MSY。补充时期捕捞阶段未捕捞阶段λρtctλtr未补充时期年龄t图11.6鱼类种群生命周期示意图1、经验公式:伯塔兰菲(VonBertalanffy)体重增长方程式可表示为:•Wt:年龄t的平均体重;•W∞:随年龄增长而增长的渐近体重;•K:生长曲线的曲率,决定趋向W∞的变动率的一个常数;•t0:体重为零时的理论年龄,小于零。Wt=W∞〔1―e―K(t-t0)〕3(三)鱼类的生长2、生长参数计算:由体重生长方程式可推导得:体重W0时间tW∞图11.7鱼类体重生长曲线Z=F+M为简化,模型假设M是常数,讨论如何控制F达到合理开发。1.自然死亡系数dN/dt=-MNt定积分,得:Nt=N0e-M(t-t0)设t0为生命周期开始时间,t0=0,则上式为:Nt=N0e-Mt在补充年龄为tr,补充量为R时:Nt=Re-M(t-tr)2.捕捞死亡系数当M=0Nt=N0e-Ft3.总死亡系数在捕捞阶段,Nt=N0e-(F+M)t(四)鱼类的死亡当捕捞的最初年龄为tc,年龄tc时数量为R'则:Nt=R'·e-(F+M)(t-tc)或Nt=R'e-Z(t-tc)瞬时总死亡系数的估算及其分离:(1)瞬时总死亡系数Z的估算单位捕捞力量渔获量:CPUE=Y/fCPUE是某水域中鱼类分布密度的指标数,所以它可以用来表示渔场中种群数量大小的相对特征值,即平均相对种群数量的指标。假设渔获量与种群数量成正比设t1时,CPUE是n0,种群数量N0;t1时,CPUE是n1,种群数量N1则n0/n1=N0/N1由Nt=N0e-(F+M)t,得N1=N0e-(F+M)N0/N1=e(F+M)=etln(N0/N1)=F+M=Z=ln(n0/n1)同一世代t龄到t+1龄的总死亡Z:Z=ln[(Yt/ft)/(Y(t+1)/f(t+1))](2)瞬时自然死亡系数和瞬时捕捞死亡系数的分离Z=F+M若能估算出M,即可求得F根据Z=qf+M设q、M为常数,通过一系列Z与f,经直线回归,可得出。上述各方程参数的估算需用一些实践参数,包括年龄鉴定、各年龄体重、各年龄数量、捕捞力量和渔获量。(五)动态库模型•公式中,W∞、M、t0、K是常数,需求出;F、ρ、λ是变量,而ρ、λ由tc决定,因此公式本质上反映了YW与F、tc的关系。•由模型作图,得等产量曲线。模型推导:在一定捕捞强度下,某世代群体在t龄时的可能渔获量YW和相应的捕捞死亡系数F,可用微分方程表示:dYW/dt=FNtWt1514121086420tλF图11.8北海鲽的等产量曲线图传统管理模式往往以环境保持基本稳定为前提条件,但海洋生态过程是动态过程,许多生态因子(自然与人为)始终处于变动之中,都会对渔业产量产生影响。四、传统渔业资源管理模式的局限性第二节大海洋生态系的管理一、大海洋生态系的内涵(一)大海洋生态系的一般概念1984年,美国海洋大气局的K.Sherman和罗得岛大学的L.Alexander首先提出大海洋生态系(largemarineecosystems,LMEs)的概念:l.大海洋生态系的面积一般要在20万km2以上,主要包括从沿岸到陆架边缘水域;2.具有独特的海底深度、海洋学特征和生产力特征;3.生物种群具有适宜的繁殖、生长和营养(食物链)的依赖关系,组成一个自我发展的循环系统;4.对污染、人类捕捞和海洋环境等因素的压力具有相同的影响和作用。大海洋生态系的观点使海洋综合管理(主要是资源和环境管理)从行政区划管理走向生态系统管理。有利于跨国研究、监测、管理和持续利用海洋生物资源,已引起各国的广泛关注和积极响应。现在大海洋生态系的概念有所扩展,不再强调20万km2的面积,事实上有少数大海洋生态系的面积不到10万km2。目前全球已确定诸如波罗的海、地中海、我国东海、黄海等50个大海洋生态系,大多数大海洋生态系面临捕捞过度、环境污染严重、海洋生物栖息地质量下降等问题的困扰人为因素:1、人类不合理捕捞活动是导致大海洋生态系变化的重要原因。2、污染成为系统外部人为影响的另一重要因素。3、沿岸大型海岸工程建设会导致变水流方向改变、加快淤泥沉积和阻断溯河鱼类的洄游通道等。(二)影响大海洋生态系质量的因素自然因素:1、全球气候异常2、海流流向改变3、“自然猎捕”大海洋生态系的质量主要以系统的稳定性和生产力水平为判断的依据。Sherman博士等人提出5个指数评价海洋生态系的健康:生物多样性、稳定性、产量、生产力和弹性。(一)管理目标世界海洋渔业的管理方向将由过去的开发型向管理型转变,从单种到多种资源管理并向着整体、系统水平发展。大海洋生态系管理的基本目标包括:1.持续利用海洋生物资源2.保护业已衰退的某种渔业资源3.最终实现增加经济效益和渔民收入的目标。(二)大海洋生态系管理的实践与存在问题资源保护:控制捕捞力量、扩大网目和禁渔期、禁渔区等资源增殖:种苗放流和保护幼鱼、投放人工鱼礁以吸引鱼类和防止有害的拖网作业等方面采取一些措施。二、大海洋生态系的管理目标与实践主要的问题:1、如何做好不同国家之间的合作与协调单个国家容易管理,如澳大利亚,南极国家内部不同部门的利益协调2、还有另外一些必须深入研究的重要课题一些种群存活、生长、繁殖、分布等情况及影响因素还不清楚。大海洋生态系出现的问题不是靠短期的、局部的努力就能解决的,甚至不是一个国家单独能解决的。UNDP、UNE
本文标题:养殖水域生态学-11
链接地址:https://www.777doc.com/doc-3144592 .html