您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 其它行业文档 > 必修2--圆与方程知识点归纳总结
必修2宝剑锋从磨砺出梅花香自苦寒来宝安数学老师瞿老师上门一对一15915355718QQ:18384718501圆与方程1.圆的标准方程:以点),(baC为圆心,r为半径的圆的标准方程是222)()(rbyax.特例:圆心在坐标原点,半径为r的圆的方程是:222ryx.2.点与圆的位置关系:(1).设点到圆心的距离为d,圆半径为r:a.点在圆内d<r;b.点在圆上d=r;c.点在圆外d>r(2).给定点),(00yxM及圆222)()(:rbyaxC.①M在圆C内22020)()(rbyax②M在圆C上22020)()rbyax(③M在圆C外22020)()(rbyax(3)涉及最值:①圆外一点B,圆上一动点P,讨论PB的最值minPBBNBCrmaxPBBMBCr②圆内一点A,圆上一动点P,讨论PA的最值minPAANrACmaxPAAMrAC思考:过此A点作最短的弦?(此弦垂直AC)3.圆的一般方程:022FEyDxyx.(1)当0422FED时,方程表示一个圆,其中圆心2,2EDC,半径2422FEDr.必修2宝剑锋从磨砺出梅花香自苦寒来宝安数学老师瞿老师上门一对一15915355718QQ:18384718502(2)当0422FED时,方程表示一个点2,2ED.(3)当0422FED时,方程不表示任何图形.注:方程022FEyDxCyBxyAx表示圆的充要条件是:0B且0CA且0422AFED.4.直线与圆的位置关系:直线0CByAx与圆222)()(rbyax圆心到直线的距离22BACBbAad1)无交点直线与圆相离rd;2)只有一个交点直线与圆相切rd;3)有两个交点直线与圆相交rd;弦长|AB|=222drdrd=rrd还可以利用直线方程与圆的方程联立方程组0022FEyDxyxCByAx求解,通过解的个数来判断:(1)当0时,直线与圆有2个交点,,直线与圆相交;(2)当0时,直线与圆只有1个交点,直线与圆相切;(3)当0时,直线与圆没有交点,直线与圆相离;5.两圆的位置关系(1)设两圆2121211)()(:rbyaxC与圆2222222)()(:rbyaxC,圆心距221221)()(bbaad①条公切线外离421rrd;②条公切线外切321rrd;③条公切线相交22121rrdrr;必修2宝剑锋从磨砺出梅花香自苦寒来宝安数学老师瞿老师上门一对一15915355718QQ:18384718503④条公切线内切121rrd;⑤无公切线内含210rrd;外离外切相交内切(2)两圆公共弦所在直线方程圆1C:221110xyDxEyF,圆2C:222220xyDxEyF,则1212120DDxEEyFF为两相交圆公共弦方程.补充说明:①若1C与2C相切,则表示其中一条公切线方程;②若1C与2C相离,则表示连心线的中垂线方程.(3)圆系问题过两圆1C:221110xyDxEyF和2C:222220xyDxEyF交点的圆系方程为22221112220xyDxEyFxyDxEyF(1)补充:①上述圆系不包括2C;②2)当1时,表示过两圆交点的直线方程(公共弦)③过直线0AxByC与圆220xyDxEyF交点的圆系方程为220xyDxEyFAxByC6.过一点作圆的切线的方程:(1)过圆外一点的切线:①k不存在,验证是否成立②k存在,设点斜式方程,用圆心到该直线距离=半径,即必修2宝剑锋从磨砺出梅花香自苦寒来宝安数学老师瞿老师上门一对一15915355718QQ:183847185041)()(2110101RxakybRxxkyy求解k,得到切线方程【一定两解】例1.经过点P(1,—2)点作圆(x+1)2+(y—2)2=4的切线,则切线方程为。(2)过圆上一点的切线方程:圆(x—a)2+(y—b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0—a)(x—a)+(y0—b)(y—b)=r2特别地,过圆222ryx上一点),(00yxP的切线方程为200ryyxx.例2.经过点P(—4,—8)点作圆(x+7)2+(y+8)2=9的切线,则切线方程为。7.切点弦(1)过⊙C:222)()(rbyax外一点),(00yxP作⊙C的两条切线,切点分别为BA、,则切点弦AB所在直线方程为:200))(())((rbybyaxax8.切线长:若圆的方程为(xa)2(yb)2=r2,则过圆外一点P(x0,y0)的切线长为d=22020b)(+)(ryax.9.圆心的三个重要几何性质:①圆心在过切点且与切线垂直的直线上;②圆心在某一条弦的中垂线上;③两圆内切或外切时,切点与两圆圆心三点共线。10.两个圆相交的公共弦长及公共弦所在的直线方程的求法例.已知圆C1:x2+y2—2x=0和圆C2:x2+y2+4y=0,试判断圆和位置关系,若相交,则设其交点为A、B,试求出它们的公共弦AB的方程及公共弦长。
本文标题:必修2--圆与方程知识点归纳总结
链接地址:https://www.777doc.com/doc-3151691 .html