您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 企业文化 > 配合物稳定常数的测定
1第七章配合物稳定常数的测定配合物稳定常数是判断溶液中配合物稳定性的重要数据。早期的测定方法是:测得的是配合物的积累稳定常数实验方法上分:传统的方法有:1电位法1)电动势法2)pH-电位法2分光光度法3溶剂萃取法4离子交换法5极谱法现代的方法:1核磁共振法2顺磁共振法3折射法4直接量热法5测温滴定量热法数据处理方法上的进展:1提出了测定稳定常数的比较普遍适用的数据处理方法2计算机的引入,3数学方法在测定稳定常数时的应用:1)最小二乘法2)加权最小二乘法测定的稳定常数一般为浓度稳定常数:在一定离子强度下的稳定常数,离子强度的支持电解质有:NaClO4KNO3NaNO3KClNaCl对于稳定常数大者,采用较小的离子强度对于稳定常数小者,采用较大的离子强度实验方法上分:A直接测出参与某一反应的物种的平衡浓度,pH电位法,电动势法,极谱法,溶剂萃取法,离子交换法。B测出体系的物理化学性质来间接求出各物种的浓度,如光密度(分光光度法),量热法等。本课程主要介绍电动势法和pH-电位法。第一节用于测定配离子稳定常数时的函数用有关的实验方法测定配离子的稳定常数时,将有关数据,通过适当的函数,与待求的稳定常数联系起来,经过一定的数据处理,有图解或计算可求出稳定常数。1Fronaeus函数Fronaeus函数又称为成配度,和前面的副反应系数αM的形式是一样的,通常用Y0表示:2Y0=][][MMT即αM对于形成配合物的体系,因有:M+iL=MLIiiiLMML]][[][[MLI]=βI[M][L]I而[M]T=niiML1][1Y0=][][...][][][2MMLnMLMLMn=1+niiiL1][Y0仅仅是游离配体浓度[L]的函数。2生成函数n(Bjerrum函数)生成函数n表示已与中心离子M配位的配体数目的平均值。中心离子的总浓度体的总浓度已配位于中心离子的配n对于M与配体L形成单核配离子体系来说,已与中心离子配位的配体的总浓度为:[ML]+2[ML2]+3[ML3]+….+n[MLn],中心离子的总浓度为[M]T,则有:][....][][][...][2][2nnMLMLMMLnMLMLn将有关稳定常数的表达式代入,则有:nnnnLLLnLLn][...][1][...][2][1221小结:生成函数n只是[L]的函数。实际上与金属离子配位的配体的浓度由下式表达:1L不加质子的情况[L]T=[L]+niiMLi1][即分子=niiMLi1][=[L]T-[L]3TTMLLn][][][2L可加质子的情况[L]T=[L]+niiMLi1][+miiLH1][即分子=niiMLi1][=[L]T-[L]-miiLH1][将有关L的加质子常数代入后有:niiMLi1][=[L]T-[L](1+miiHiH1][)TiMHn][)][+1([L]-[L]m1iHiT函数Y0和是在电子计算机处理配离子的稳定常数之前提出的,而在后来的计算机处理法中仍然采用这两函数。第二节Fronaeus函数和生成函数的应用理论上利用这两个函数,通过曲线拟合可以求出配合物的稳定常数,或通过实验点可以求出(n个稳定常数,有n个点,建立n个方程)1Leden法Leden提出了一个与Fronaeus函数极相似的函数,一般又称为Leden函数:Y0=1+niiiL1][123210][...][][][1nnLLLLY令Y1=][10LYY1即称为Leden函数,实际上Y1也是[L]的函数。方法:1)实验求出Y0和[L]2)求出Y13)以Y1对[L]作图4)在Y1-[L]图上有一段直线,在这段直线中:截距=β1斜率=β25)求出β1后,再造一函数Y2,][112LYY=232][...][nnLL6)以Y2对[L]作图,在直线部分求得斜率β3和截距β22徐光宪法通过Y值的对数(lgY)与配体的浓度[L]作图,取直线部分的数据,其截距为lgβ4即有:lgYj=lgβj+b[L]123211][...][][nnLLLY两边取对数:)][...][][lg(lg123211nnLLLY)][...][][1lg(lglg112131211nnLLLY当][12L很小时,高阶的可以忽略,即)][...][][1lg(1121312nnLLL≈])[1lg(12L])[1lg(12L在一定范围内,可以用下式表达:])[1lg(12L=b[L]即lgY1=lgβ1+b[L]同理,有:lgYj=lgβj+b[L]用Fronaeus函数和生成函数进行数据处理时,在求出Y的过程中,即要知道[M]又要知道[L],这两种数据都必须由实验测得。如配体不加质子,且有[L]T[M]T时,可用[L]T代替[L]在配体加合质子的情况下,由已知[L]T条件下测定pH,由pH的关系:[L]T=[L]+niiMLi1][+miiLH1][[L]≈[L]T/(1+miiHiH1][)如果[L]T不是比[M]T大很多,则仍可以采用上述方法处理,求出近似的Y1,。。。,Yn和β1,β2….βn3生成函数的半整数法实验求出生成函数n和[L]后,主要有生成函数n的半整数法和Rossotti-Rossotti法求得稳定常数。1)半整数法要点:以n-lg[L]作图,在n分别为27,25,23,21处所对应的-lg[L]即为lgK1,lgK2,lgK3,lgK4值。5要求:相邻的两级稳定常数之间的大小要在103,可以得到较为准确的结果。对于一个M-L-H2O体系,假如M与L形成两级配合物,有:]][[][1LMMLK当n=1/2时,则有lgK1=-lg[L]即211][1LK,即n=1/2时应有[ML]=[M]才成立。在n=1/2时其表达式为:][][][][2][2122MLMLMMLML即2[ML]+4[ML2]=[M]+[ML]+[ML2]因为[M]=[ML],则有:4[ML2]=[ML2],即[ML2]=0[ML2]可以认为很小(可以认为是0)的条件:2122]][[][LMLMLK,而211][1LK,有][][221MLMLKK当K1>>K2时,[ML][ML2],即[ML2]可以忽略。而当n=3/2时,则有lgK2=-lg[L]即232][1LK,即n=3/2时应有[ML]=[ML2]才成立。在n=3/2时其表达式为:][][2][3][][][][2][2322MMLMLMLMLMMLML即即[M]=0,则有:[M]可以认为很小(可以认为是0)的条件:当K2=23][1L时有:231]][[][LMMLK=2][][KMML,即K1>>K2很多。相差不是103时,则可采用逐渐逼近法。4Rossotti-Rossotti法一种图解法,由F.J.C.Rossotti和H.Rossotti提出。适用的体系:相邻两级的稳定常数相差较小时较为适用。处理方法:以n和[L]的数据为基础。6nniiiniiiLLi11][1][,有:n+0][)(1iiniLinn+(n-1)β1[L]+(n-2)β2[L]2+(n-3)β3[L]3+…+(n-n)βn[L]n=0将上式进行变换:12321][1...][13][12])[1(nnLnnnLnnLnnLnn以])[1(Lnn对][12Lnn作图,在直线部分,其截距为β1,斜率为β2,求出β1和β2后再造一函数:2321][2...][23][12])[1(nnLnnnLnnLnnLnn作图以][12])[1(1LnnLnn对][23Lnn作图事实上没有如此复杂,在水溶液中能形成的配合物的级数在有机配体时是有限的,高至4,5级已不为多数。通常采用联合法处理:两级相差较大的用半整数法处理,相差较小的可用Rossotti法处理。第三节测定金属离子浓度法(pM法)有了Fronaeus函数,由相应的实验技术,求出[M]1)电动势法通常设计一个浓差电池。当含金属离子的溶液在不含配位体的条件下,其电位值与金属离子的总浓度有关,在相同的金属离子总浓度政,加入配体,则配体与金属离子配位。体系中游离的金属离子浓度要下降,电位值也下降。例如测定Pb2+--Cl-配离子的稳定常数,可以安排政列浓差电池:Pb(ClO4)([M]T)Pb(ClO4)([M]T)HClO4(y)HClO4(y)Pb(Hg)NaCl(z)Pb(Hg)NaClO4(I-3[M]T-y-z)NaClO4(I-3[M]T-y)7理论上,在无配位剂时,右边的电位可用下式表示:ER=E0+TPbFRT]ln[2在有配位剂存在的情况下,由于配位反应的发生,[Pb]会下降,其电位可表达为:EL=E0+]ln[2PbFRT第四节测定配体浓度法(pH法)实质:利用测定体系pH的变化,求算出溶液中配体的浓度。也是一种电位法。PH电位法适用的对象:配体能加合质子的配体-金属离子-水系PH计上读出的是氢离子活度的负对数,在一般近似计算中,可将ph值当成氢离子的浓度负对数。在大多数的情况下对最终的结果无影响。但在要求得到较精确的氢离子浓度时,通常采用下列两种方法:A查有关文献,得出在一定离子活度政的氢离子活度系数,由H+的活度求得浓度。B用氢离子浓度已知的强酸溶液标定pH计,一.配体加质子常数的测定1数据处理方法数据处理方法类似于用生成函数n处理配合物稳定常数的过程,设L有m级加质子L+iH=HiLmiHLLHiiHi,...,1]][[][定义:配体的总浓度总浓度加合质子已与配体+HLnH][...][][][][...]2[][22LHLHHLLLHmLHHLmm=将[HIL]=βI[L][H]I代入上式,则有:mmHmHHHmHHHHHHHmHHn][...][][][...][2][221221其形式与n极为相似,只是由[H]I代替[L]IβHI代替βI由Hn与-lg[H]作图,2Hn的计算方法实验中[H]由pH的测量求得,关键是如何求得Hn实验中的溶液中的总酸度是由主观控制的,如要求Ac-的加质子常数。8溶液中乙酸的起始浓度为C0,起始的总酸度也为C0对于可以加合多个质子的的配体如PO43-,溶液中磷酸的起始浓度为C0,起始的总酸度为3C0对于乙二胺,体系中可加入一定浓度的HclO4(C0),则起始的总酸度为C0体系中,溶液的总酸度可表达为:[H]T=[H]+[HL]+2[H2L]+…+m[HmL]其中[HL]+2[H2L]+…+m[HmL]部分是已加合到配体L上的H+的总浓度,[H]代表未加合到L的H+的浓度,其来源有两部分:A本身加入的酸的贡献;B水电离的贡献;例如,测得pH=4,则[OH]=10-10,OH是由水的离解而来的,即有10-10mol/L的水发生了离解,产生了10-10的OH,同时也产生了10-10的H+,但这部分10-10是包括中[H]10-4之中的,所以真实的[H]浓度,[H]真实=[H]表观-真实][HKw,即:[H]真实=10-4-10-10[H]T=[H]+[HL]+2[H2L]+…+m[HmL]-[OH][H]T=[H]+mimOHLHi1][][,其中mimLHi1][为已与配体L加合的H的总浓度,为Hn定义中的分子部分,所以Hn=TTLOHHH][][][][miimimiimiHHi11][1][其中[H]T和[L]T是配制溶液时即已知的,而[H]和[OH]则由pH值的测量求得,用浓度已知的NaOH溶液滴定体系可以得到一系列的Hn-lg[H]值,滴定过程中如NaOH的浓
本文标题:配合物稳定常数的测定
链接地址:https://www.777doc.com/doc-3179203 .html