您好,欢迎访问三七文档
当前位置:首页 > 幼儿/小学教育 > 小学教育 > 5-有限域-有限域的结构-有限域特征
第二章有限域结构1有限域的特征特征的含义无零因子含幺环的特征:0或者素数素域:Q和Z/(p)={0,1,…,p1}定理设F是域,P是F的素域.若charF=p,则PZ/(p).若charF=0,则PQ.有限域的特征是素数无限域的特征一定是0吗?2有限域的元素个数特征为p的有限域F都是Fp上的有限(维数)扩张。|F|=pn,n=[F:Fp].任意给定素数p和正整数n,是否一定存在pn元有限域?如何构造有限域?3有限域的存在性与唯一性存在性定理对每个素数p和每个整数n,存在pn元有限域.证明q=pn,F是xqx在Fp上的分裂域.S={aF|aqa=0}S=F.4唯一性定理设F是q=pn元有限域,则F是同构于xqx在Fp上的分裂域.q元有限域记为Fq5CharacterizationofFiniteFields子域的存在唯一性定理设q=pn,若E是Fq的子域,则|E|=pm,其中m是n的正因子;反之,若m是n的正因子,则Fq有唯一的pm元子域。例:F230的全体子域6设f(x)是Fp上的n次不可约多项式Fp[x]中的同余关系a(x)b(x)modf(x)f(x)|a(x)b(x)overFp任意给定的g(x)Fp[x]与Fp[x]中某个次数小于n的多项式(包括0)同余g(x)=f(x)q(x)+r(x),r(x)=0或deg(r(x))ng(x)r(x)modf(x)Fp[x]模f(x)的全体两两不同余的代表元为{r(x)Fp[x]|r(x)=0或deg(r(x))n}7pn设f(x)是Fp上的n次不可约多项式F={r(x)Fp[x]|r(x)=0或deg(r(x))n}多项式的加:g(x)+h(x)模f(x)的乘法:g(x)h(x)(modf(x))是否域?F关于加法构成群F\{0}关于乘法构成群F是pn元有限域8Fp[x]/(f(x))F16元有限域F24f(x)=x4+x+1是F2上的不可约多项式F=({0,1,x,x+1,x2,x2+1,x2+x,x2+x+1,x3,x3+1,x3+x,x3+x+1,x3+x2,x3+x2+1,x3+x2+x,x3+x2+1},+,modf(x))F2[x]/(x4+x+1)F9(x2+x)+(x3+x+1)=x3+x2+1(x2+x)(x3+x+1)=x3+x2+x+116元有限域F24f(x)=x4+x+1是F2上的不可约多项式g(x)=x4+x3+1是F2上的不可约多项式F2[x]/(f(x))F2[x]/(g(x))能否给出同构映射?(作业)10Fp上n次不可约多项式的存在性定理记有限域Fq的全体非零元Fq*,则Fq*关于乘法运算是循环群.11Fp上n次不可约多项式的存在性定理记有限域Fq的全体非零元Fq*,则Fq*关于乘法运算是循环群.证明ord(12n)=q112设q3,q1neneerrr2121.多项式1/)1(irqx在Fq中至多有(q1)/ri个根记i不是1/)1(irqx的根,令iieirqi/)1(.ord(i)=ieir本原元(primitiveelement)乘法群Fq*的生成元称为Fq中的本原元。Fq中有(q1)个本原元13Fp上n次不可约多项式的存在性定理设有限域Fr是Fq的扩域,则Fr是Fq上的单代数扩张。推论存在Fp上的n次不可约多项式。14不可约多项式的根元素Fqn在Fq上的极小多项式:首一,不可约设f(x)是Fq上的n次不可约多项式,是f(x)在Fq扩域上的根(问:是否有重根?)f(x)的全体根,q,q2,…,qn1Fq()是qn元有限域,Fq()Fqn是f(x)的分裂域Fq上的n次不可约多项式的分裂域同构Fqn15共轭元设Fqm是Fq的扩张,Fqm,则,q,q2,…,qm1称为关于Fq的共轭元。注:设Fqm,则关于Fq的共轭元两两不同当且仅当在Fq上的极小多项式次数等于m。注:若d是m的因子,关于Fq共轭元的不同元素为,q,q2,…,qd1,每个元素重复m/d次.16共轭元定理设Fqm是Fq的扩张,Fqm,则关于Fq的共轭元在乘法群Fq*中有相同的阶。推论若Fqm是Fqm中的本原元,则关于Fq的共轭元都是Fqm中的本原元。17Fqm的Fq-自同构若是Fqm的自同构并且对于aFq有(a)=a,则称是Fqm的Fq-自同构。18Fqm的Fq-自同构定理Fqm的全体不同的Fq-自同构为0,1,…,m1,其j()=qj,Fqm,0jm1.证明验证j是Fqm的Fq-自同构说明0,1,…,m1两两不同若是Fqm的Fq-自同构,则{0,1,…,m1}19Fqm的Fq-自同构定理Fqm的全体不同的Fq-自同构为0,1,…,m1,其j()=qj,Fqm,0jm1.{0,1,…,m1}是循环群,生成元为1Gal(Fqm/Fq)={0,1,…,m1}20
本文标题:5-有限域-有限域的结构-有限域特征
链接地址:https://www.777doc.com/doc-3182445 .html