您好,欢迎访问三七文档
图像增强论文作者:朱振国[日期]1数字图像增强技术作者:朱振国论文导读:图像增强的目的是要增强视觉效果,将原来不清晰的图像变得清晰或强调某些感兴趣的特征,抑制不感兴趣的特征,以达到改善图像质量、丰富信息量的目的,并加强图像判读和识别效果的图像处理方法。采用邻域平均法的均值滤波器非常适用于去除通过扫描得到的图像中的颗粒噪声(如椒盐噪声)。它是一种常用的非线性平滑滤波器,其基本原理是把数字图像或数字序列中一点的值用该点的一个领域中各点值的中值代换其主要功能是让周围象素灰度值的差比较大的像素改取与周围的像素值接近的值,从而可以消除孤立的噪声点,所以中值滤波对于滤除图像的椒盐噪声非常有效。在对比了多种去噪方法之后,本文发现经典的图像去噪方法如:维纳滤波和中值滤波,一直存在着去噪之后导致图像模糊的问题。关键词:图像增强,均值滤波,中值滤波,维纳滤波引言获取和传输图像的过程往往会发生图像失真,所得到图像和原始图像有某种程度的差别。这种差异如果太大,就会影响人和机器对于图像的理解,在许多情况下,人们不清楚引起图像降质的具体物理过程及其数学模型,但却能根据经验估计出使图像降质的一些可能原因,针对这些原因采取简便有效的方法,改善图像质量。2一、图像增强的定义为了改善视觉效果或者便于人和机器对图像的理解和分析,根据图像的特点或存在的问题采取的简单改善方法或者加强特征的措施称为图像增强。二、图像增强的目的图像增强的目的是要增强视觉效果,将原来不清晰的图像变得清晰或强调某些感兴趣的特征,抑制不感兴趣的特征,以达到改善图像质量、丰富信息量的目的,并加强图像判读和识别效果的图像处理方法。其方法是通过一定手段对原图像附加一些信息或变换数据,有选择地突出图像中感兴趣的特征或者抑制(掩盖)图像中某些不需要的特征,使图像与视觉响应特性相匹配。在图像增强过程中,不分析图像质量降低的原因,处理后的图像不一定逼近原始图像。三、图像增强的分类图像增强可分成两大类:频率域法和空间域法。前者把图像看成一种二维信号,对其进行基于二维傅里叶变换的信号增强。采用低通滤波(即只让低频信号通过)法,可去掉图中的噪声;采用高通滤波法,则可增强边缘等高频信号,使模糊的图片变得清晰。具有代表性的空间域算法有局部求平均值法和中值滤波取局部邻域中的中间像素值)法等,它们可用于去除或减弱噪声。图像增强的方法是通过一定手段对原图像附加一些信息或变换数据,有选择地突出图像中感兴趣的特征或者抑制(掩盖)图像中某些不需要的特征,使图像与视觉响应特性相匹配。在图像增强过程中,不分析图像降质的原因,处理后的图像不一定逼近原始图像。图像增强技术根据增强处理过程所在的空间不同,可分为基于空域的算法和基于频域的算法两大类。3图像增强频率域增强空间域增强图像代数运算平滑滤波直接灰度变换直方图灰度变换低通滤波高通滤波带通滤波帯阻滤波灰度变换空域滤波领域平均法中值滤波线性变换基于空域的算法处理时直接对图像灰度级做运算基于频域的算法是在图像的某种变换域内对图像的变换系数值进行某种修正,是一种间接增强的算法。基于空域的算法分为点运算算法和邻域去噪的算法。点运算算法即灰度级校正、灰度变换和直方图修正等,目的或使图像成像均匀,或扩大图像动态范围,扩展对比度。邻域增强算法分为图像平滑和锐化两种。一般用于消除图像噪声,但是也容易引起边缘的模糊。常用算法有均值滤波、中值滤波。锐化的目的在于突出物体的边缘轮廓,便于目标识别。常用算法有梯度法、算子、高通滤波、掩模匹配法、统计差值法等。图1----图像增强的分类锐化滤波非线性变换直方图均衡化直方图规定化定向滤波拉普拉斯算子法梯度法指数拉伸其他被线性拉伸按比例线性拉伸分段线性拉伸对数拉伸4四、图像增强的理论基础图像增强技术根据增强处理过程所在的空间不同,可分为基于空域的算法和基于频域的算法两大类。基于空域的算法处理时直接对图像灰度级做运算。基于频域的算法是在图像的某种变换域内对图像的变换系数值进行某种修正,是一种间接增强的算法。平滑技术用于平滑图像中的噪声。平滑噪声可以在空间域中进行,基本方法是求像素灰度的平均值或中值。为了既平滑噪声又保护图像信号,也有一些改进的技术,比如在频域中运用低通滤波技术。1.直方图图像的直方图是图像的重要统计特征,它可以认为是图像灰度密度函数的近似。图像的灰度直方图是反映一幅图像的灰度级与出现这种灰度级的概率之间的关系的图形。灰度直方图是离散函数,一般的来讲,要精确的得到图像的灰度密度函数是比较困难的,在实际中,可以使数字图像灰度直方图来代替。归纳起来,直方图主要有一下几点性质:(1)直方图中不包含位置信息。直方图只是反应了图像灰度分布的特性,和灰度所在的位置没有关系,不同的图像可能具有相近或者完全相同的直方图分布。(2)直方图反应了图像的整体灰度。直方图反应了图像的整体灰度分布情况,对于暗色图像,直方图的组成集中在灰度级低(暗)的一侧,相反,明亮图像的直方图则倾向于灰度级高的一侧。直观上讲,可以得出这样的结论,若一幅图像其像素占有全部可能的灰度级并且分布均匀,这样的图像有高对比度和多变的灰度色调。(3)直方图的可叠加性。一幅图像的直方图等于它各个部分直方图的和。(4)直方图具有统计特性。从直方图的定义可知,连续图像的直方图是一位连续函数,它具有统计特征,例如矩、绝对矩、中心矩、绝对中心矩、熵。(5)直方图的动态范围。直方图的动态范围是由计算机图像处理系统的模数转换器的灰度级决定。2.直方图均衡化的主要步骤(1)计算原图像的灰度直方图(2)计算原图像的灰度累积分布函数(3)根据灰度变换表,将原图像各灰度级映射为新的灰度级。53.图像二值化图像的二值化处理就是将图像上的像素点的灰度值设置为0或255,也就是讲整个图像呈现出明显的黑白效果。将256个亮度等级的灰度图像通过适当的阀值选取而获得仍然可以反映图像整体和局部特征的二值化图像。在数字图像处理中,二值图像占有非常重要的地位,首先,图像的二值化有利于图像的进一步处理,使图像变得简单,而且数据量减小,能凸显出感兴趣的目标的轮廓。其次,要进行二值图像的处理与分析,首先要把灰度图像二值化,得到二值化图像。所有灰度大于或等于阀值的像素被判定为属于特定物体,其灰度值为255表示,否则这些像素点被排除在物体区域以外,灰度值为0,表示背景或者例外的物体区域。4.线性滤波输出图像的值等于输入图像滤波后值的局部平均,各个项具有相同的权。对一些图像进行线性滤波可以去除图像中某些类型的噪声,如采用邻域平均法的均值滤波器就非常适用于去除通过扫描得到的图像中的颗粒噪声。邻域平均法是空间域平滑噪声技术。用一像素邻域内各像素灰度平均值来代替该像素原来的灰度,即是邻域平均技术。5.锐化图像锐化处理的作用是使灰度反差增强,从而使模糊图像变得更加清晰。图像模糊的实质就是图像受到平均运算或积分运算,因此可以对图像进行逆运算,如微分运算以突出图像细节使图像变得更为清晰。由于拉普拉斯是一种微分算子,它的应用可增强图像中灰度突变的区域,减弱灰度的慢变化区域。因此,锐化处理可选择拉普拉斯算子对原图像进行处理产生描述灰度突变的图像,再将拉普拉斯图像与原始图像叠加而产生锐化图像。6.利用sym4函数进行小波变换进行图像增强基于小波分析的图像增强,就是突出图像的边缘细节,尽可能的消除负面因素,从而达到增强图像的目的。基于小波分析的图像增强是采用小波变换,对低频成分进行特殊处理,以增强图像中的目标信息。6五.图像增强的技术要点1.平滑滤波平滑滤波的作用是对图像的高频分量进行削弱或消除,增强图像的低频分量。平滑滤波一般用于消除图像中的随机噪声,从而起到图像平滑的作用。平滑线性空间滤波器的输出(响应)是包含在滤波掩模邻域内像素的简单平均值。因此这些滤波器也被称为均值滤波器。平滑滤波器的概念很简单:它是用滤波掩模确定的领域内像素的平均值去代替图像每个像素点的值。这种处理减少了图像灰度的尖锐化,每个掩模前边的乘数等于它的系数值的和,以计算平均值。我们经常用这些极端类型的模糊处理来去除图像中的一些小物体。2.中值滤波中值滤波是一种最常用的去除噪声的非线性平滑滤波处理方法。基本原理是把数字图像或数字序列中一点的值用该点的一个领域中各点值的中值代换,其主要功能是让周围象素灰度值的差比较大的像素改取与周围的像素值接近的值,从而可以消除孤立的噪声点,所以中值滤波对于滤除图像的椒盐噪声非常有效。中值滤波器可以做到既去除噪声又能保护图像的边缘,从而获得较满意的复原效果,而且,在实际运算过程中不需要图像的统计特性,这也带来不少方便,但对一些细节多,特别是点、线、尖顶细节较多的图像不宜采用中值滤波的方法。中值滤波的滤波原理与均值滤波的不同之处在于:中值滤波器的输出像素是由邻域像素的中间值而不是平均值决定的。3.锐化滤波图像的平滑处理会使图像的边缘纹理信息受到损失,图像变得比较模糊,如果需要突出图像的边缘纹理信息,则可以通过锐化滤波器实现,它可以消除或减弱图像的低频分量从而增强图像中物体的边缘轮廓信息,使得除边缘以外的像素点的灰度值趋向于零。常用的锐化滤化主要方法有梯度法、拉普拉斯算子法等。4.均值滤波采用邻域平均法的均值滤波器非常适用于去除通过扫描得到的图像中的颗粒噪声(如椒盐噪声)。领域平均法有力地抑制了噪声,同时也由于平均而引起了模糊现象,模糊程度与领域半径成正比。几何均值滤波器所达到的平滑度可以与算术均值滤波器相比,但在滤波过7程中会丢失更少的图像细节。谐波均值滤波器对盐噪声效果更好,但是不适用于胡椒噪声。它善于处理像高斯噪声那样的其他噪声。逆谐波均值滤波器更适合于处理脉冲噪声,但它有个缺点,就是必须要知道噪声是暗噪声还是亮噪声,以便于选择合适的滤波器阶数符号,如果阶数符号选择错了可能会引起灾难性的后果。5.自适应维纳滤波它能根据图像的局部方差来调整滤波器的输出,局部方差越大,滤波器的平滑作用越强。它的最终目标是使恢复图像与原始图像的均方误差最小。该方法的滤波效果比均值滤波器效果要好,对保留图像的边缘和其他高频部分很有用,不过计算量较大。维纳滤波器对具有白噪声的图像滤波效果最佳。6.直方图均衡化有些图像在低值灰度区间上频率较大,使得图像中较暗区域中的细节看不清楚。这时可以通过直方图均衡化将图像的灰度范围分开,并且让灰度频率较小的灰度级变大,通过调整图像灰度值的动态范围,自动地增加整个图像的对比度,使图像具有较大的反差,细节清晰。其优势是能够使得处理后图像的概率密度函数近似服从均匀分布,其结果扩张了像素值的动态范围,是一种常用的图像增强算法。不足之处是不能抑制噪声。7.对比度增强法有些图像的对比度比较低,从而使整个图像模糊不清。这时可以按一定的规则修改原来图像的每一个象素的灰度,从而改变图像灰度的动态范围。8.平滑噪声有些图像是通过扫描仪扫描输入、或传输通道传输过来的。图像中往往包含有各种各样的噪声。这些噪声一般是随机产生的,因此具有分布和大小不规则性的特点。这些噪声的存在直接影响着后续的处理过程,使图像失真。图像平滑就是针对图像噪声的操作,其主要作用是为了消除噪声,图像平滑的常用方法是采用均值滤波或中值滤波,均值滤波是一种线性空间滤波,它用一个有奇数点的掩模在图像上滑动,将掩模中心对应像素点的灰度值用掩模内所有像素点灰度的平均值代替,如果规定了在取均值过程中掩模内各像素点所占的权重,即各像素点所乘系数,这时就称为加权均值滤波;中值滤波是一种非线性空间滤波,其与均8值滤波的区别是掩模中心对应像素点的灰度值用掩模内所有像素点灰度值的中间值代替。9.直方图增强灰度变换是图像增强的一种重要手段,使图像对比度扩展,图像更加清晰,特征更加明显。灰度级的直方图给出了一幅图像概貌的描述,通过修改灰度直方图来得到图像增强。10.对比度增强对比度增强是图像增强技术中一种比较简单但又十分重要的方法。这种方法是按一定的规则修改输入图像每一个像素的灰度,从而改变图像灰度的动态范围。它可以是灰度动态范围扩展,也可以使其压缩,或者是对灰度进行分段处理,根据图像特点和要求在某段区间中进行压缩在另外区
本文标题:数字图像增强技术
链接地址:https://www.777doc.com/doc-3184598 .html