您好,欢迎访问三七文档
当前位置:首页 > 高等教育 > 其它文档 > 1高数竞赛极限与连续专题
第一讲极限与连续一、极限的求法1.利用极限的运算性质方法:将所求函数或数列通过一些初等变换:因式分解、根式有理化、三角公式变换等,再利用极限的四则运算法则、复合函数极限的运算法则、无穷小的运算法则。1sinlim12nn例)1sin()1(lim2nnnn01sin)1(lim2nnnn)122(lim23xxxxx例)]1()12[(lim3xxxxxx]11121[lim3xxxxxx)1)(12(2lim3xxxxxxxx)2)(1)(12(2lim3xxxxxxxx41)211)(111)(1121(2limxxxxx2.利用等价无穷小替换常用的等价无穷小关系:,~arctan~arcsin,~tan,~sin,0xxxxxxxxx,~1xex,ln~1axax,~)1ln(xx,21~11xx,1~11xnxn,~1)1(xx,ln~)1(logaxxaxxxcoslncoslnlim10例)1cos1ln()1cos1ln(lim0xxx1cos1coslim0xxx22220)(21)(21limxxx;例)121)(1()cos1cos(1lim23202xxexxxx2220221)cos1(21limxxxxx41)0()(lim312xxxnnnn例)1(lim111112nnnnxxnxnnxnnnln)111(lim112xnnnxnnln)1(lim211xln))())(((lim421xaxaxaxnnx例)1)1()1)(1((lim21nnxxaxaxax)11)1()1)(1(1(lim21nnxxaxaxax]1)1()1)(1(1[lim21xaxaxanxnx][lim2221nnnxxbxbxaaanxnaaan21为其中nbb,2的系数展开式中nnxxxaxaxa1,1)1()1)(1(221)]11ln(sin)31ln([sinlim5xxxx例2]13[limxxxx)lim()lim(则,1lim~~,,注:若xxxx3~)31ln(~)31ln(sin,0当xxx1~)11ln(~)11ln(sin)21ln(1)2cos1(lim6320xxxx例,~)1ln(,0xxx一般地)1ln(~xx反过来]1)2cos1(1ln[~1)2cos1(22xxxx2cos1ln2)2cos1ln(2xxxx)0(21~)21cos1ln(23xxxx41221lim330xxx)2arctan21(arctanlim7xxxxxx例2arctan21arctanxxxx,令解,0,xtantan1tantan)tan(~452222112212xxxxxxxxxxx21452)2(lim2xxxxx原式法则。注:此题也可用洛必达3.利用重要极限)1(,)(,1)(xvxu若:)(]1)([1)(1)()1)(1(lim)(limxvxuxuxvxuxu]1)()[(limxuxvexxxtan2)(sinlim.1例)1(sintanlim2xxxe)1(cossincoslim02ttttetx令)2(coslim20tttte10e4.利用洛必达法则xxexxx2sin1lim13202例方法:先化简(初等变换、等价无穷小替换、非零因子极限先求出、变量替换),再用洛必达法则42081lim2xexxx20281limtettxtx161161lim0tetx)12lim21323xxxexx例tetttxtt33021lim11)32()21(31lim23230ttettt312)1arctan(lim3xxxx例)11arctan(lim2xxxxe3arctanlimtttte223111limttte31e])1ln(1)1ln(1[lim420xxxx例)1ln()1ln()1ln()1ln([lim220xxxxxxxxxxxxx)1ln()1ln([lim20)111ln()1ln(22xxxxxxxxx~21~11~222121111[lim20xxxxxxxxxxln1lim51例0ln)1(lim1xxxxxxxexxx11]1[lnlimln)1(1xxxxxxln1)1(lim11.212lnlim11lnlim11xxxxxxxxxexxxln11limln)1(1nnn)arctan2(lim6例解法一:原极限]1arctan2[limxxxe1arctan2limxxxe解法二:先求:xxxarctan2lnlim1arctanln2lnlimxxx原极限.2e.2111arctan1lim22xxxx)1(12lim22xxxe.2e注:数列极限利用函数极限来求例7已知(x)为连续函数,求)1ln(])()1[(lim20002xdtduutxtx20002])()1[(limxdtduutxtxxduuxxx2)()1(lim200xduuxx2)(lim200022)(lim20xxxxtxxdtex0)(50)1(1lim2220501)1(1limxuxduxexuxt22060)1(1limxuxduex5062)1(lim4xxexx315.利用左右极限一般分段函数求趋于分段点的极限用左右极限,特别含有以下几个极限也用左右极限)1(lim10aaxxxxe111limxx1arctanlim0xarcx1cotlim0例1求解:xxxxxsine1e2lim410xxxxxxsin1eee2lim43401xxxxxsine1e2lim410xxxxxsine1e2lim4101原式=1注意此项含绝对值6.利用夹逼准则(1).一般的放缩)221(lim1262626nnnnnnnn求例.解nnknnnn6626111nknknknnkknnknnk16216212626)12)(1(12nnnknk.31,原式由夹逼准则nnnnnnx1)321(limlim2求例nnmnnniaaamia21lim.),,2,1(,0求设注:),(21maaaMax,3331nnx.3limnnx根据夹逼定理知:nnnn333213解,333lim1nn又例3.求)0()2(1lim2xxxnnnn解}21max{)2(1lim22xxxxnnnn,,22110212xxxxx,,,(2).对积分型极限利用积分的性质放缩例4.求上连续,在]10[)(,)(lim10xfdxxfxnn解:上有最大、小值在则上连续,在]1,0[)(,]10[)(xfxfMxfm)(1)(1101010nMdxxMdxxfxdxxmnmnnn根据夹逼定理知:0)(lim10dxxfxnn)03lim(10dxxxnn特别(3).进行初等变形后再用夹逼定理))()2()1((lim5222nnnnnnnn求例解:)1)((1)(1)1)((12knknknknknnnxlimknkn111111knkn21)211()12111(21nnnxnnnn21limnnx7.递归数列极限的求法证明单调有界)(1nnxfx方法:1)、归纳法2)、利用函数的单调性)(xfy单调,的单调增加,则若}{)()(nxxfyi,12时当xx单调减少时,则单调增加,当则}{}{12nnxxxx无单调性,的单调减少,则若}{)()(nxxfyii.lim,}{,2,1,0,3)1(3,0111nnnnnnaanaaaa并求收敛试证设例解33633)1(301nnnnaaaaxxxf3)1(3)(0)3(6)(2xxf单调,的单调增加,则}{)(nxxfyAAAAann3)1(3,lim则根据令3limnna.lim,}{,2,1,0),(21,021nnnnnnaanaaaaa并求收敛试证设例解aaaaannn)(211),(21)(xaxxf)(0)1(21)(2axxaxf单调减少}{na的单调增加,在),[)(axfy,02112112aaaaa又3,limAAann求得令7.利用定积分的定义利用))((lim)(1ninbanabiafnabdxxf)))(1((lim1ninnabiafnab)(1lim)(110ninnifndxxf)1(1lim1ninnifn特别)41441141(lim12222nnnnn求例nninin141lim121024xdx6nnnnnnn)()2)(1(lim2求例nnnnnnn)()2)(1(lnlim解:先求nninin1)1ln(lim112ln2)1ln(10dxx12ln2)()2)(1(limennnnnnn)1sin212sin1sin(limlim3nnnnnnnnxnnn例nninin1sinlim12sin10xdx解niinni11sinninni1sinninninn1sin1nninnnin1sin1lim12sin10xdx2limnnx8利用Taylor展开式求极限2240coslimxxxex242444401()(1())2!4!242!limxxxxxoxoxx44011()1lim[()].4!42!4xoxx例1解:原式9.利用导数的定义)2(limsin)(121nfnxyxfyn在原点相切,求与设例1)(sin)0(00xxxfy解:nnfnnfnfnnnn1)2(lim)2(lim)2(lim21nfnfn2)0()2(2limnfnfn2)0(
本文标题:1高数竞赛极限与连续专题
链接地址:https://www.777doc.com/doc-3187986 .html