您好,欢迎访问三七文档
AFaber-Krahn-typeinequalityforregulartreesJosefLeydoldUniversityofEconomicsandBusinessAdministrationDepartmentofAppliedStatisticsandDataProcessingA-1090Vienna,Augasse2{6Austriaphone: 43/1/31336/4695e-mail:Josef.Leydold@wu-wien.ac.atAbstractWeshowaFaber-Krahn-typeinequalityforregulartreeswithboundary.Leydold:AFaber-Krahn-typeinequalityforregulartrees1.IntroductionTheeigenvectorsoftheLaplacian ongraphshavereceivedlittleattentioncom-paredtothespectrumofthisoperator(seee.g.[6,9,10])ortheeigenfunctionsofthe\classicalLaplaciandi erentialoperatoronRiemannianmanifolds(e.g.[1,2]).Recentlytheseeigenvectorsseemtobecomemoreimportant.Grover[7]hasdiscoveredthatthecostfunctionofanumberofwell-studiedcombinatorialoptimisationproblems,e.g.thetravellingsalesmanproblem,areeigenvectorsoftheLaplacianofcertaingraphs.Thusglobalpropertiesofsucheigenvectorsareofinterest.InthelastyearssomeresultsfortheLaplacianonmanifoldshavebeenshowntoholdalsoforthegraphLaplacian,e.g.Courant’snodaldomaintheorem([3,5])orCheeger’sinequality([4]).In[5]Friedmandescribedtheideaofa\graphwithboundary(seebelow).WiththisconcepthewasabletoformulateDirichletandNeumanneigenvalueproblems.Healsoconjecturedanother\classicalresultformanifolds,theFaber-Krahntheorem,forregularboundedtreeswithboundary.TheFaber-KrahntheoremstatesthatamongallboundeddomainsD Rnwith xedvolume,aballhaslowest rstDirichleteigenvalue.Inthispaperwewanttoshowsucharesultfortrees.Wegiverestrictiveconditionsfortreeswithboundarywherethe rstDirichleteigenvalueisminimizedforagiven\volume.AmazinglyFriedman’sconjectureisfalse,i.e.ingeneralthesetreesarenot\balls.Butwewillshowthatthesearesimilarto\balls.2.StatementoftheResultLetG=(V;E)beanundirected(weighted)graph,withweights1ce0foreache2E.TheLaplacianofGisthematrix = (G)=D(G) A(G)whereA(G)istheadjacencymatrixofGandD(G)isthediagonalmatrixwhoseentriesarethesumsoftheweightsoftheedgesattheverticesofG,i.e.Dv;v=Pe=(v;u)2E1ce.TheassociatedRayleighquotientonreal-valuedfunctionsfonVisthefractionRG(f)=h f;fihf;fi=P(u;v)2E1ce(f(u) f(v))2Pv2V(f(v))21Leydold:AFaber-Krahn-typeinequalityforregulartreesNoticethatinoppositetotheLaplaciandi erentialoperatoronmanifolds, (G)isde nedasapositiveoperator.ThegeometricrealizationofGisthemetricspaceGconsistingofVandarcsoflengthcegluedbetweenuandvforeveryedgee=(u;v)2E.Wede netwomeasuresonG(andG).Let 1(G)=jVjbethenumberofverticesofGand 2(G)=Pe2Ece,i.e.theLebesguemeasureofG.NowletSdenotethesetofallcontinuousfunctionsonGwhicharedi erentiableonGnV.Weintroducea(Laplacian)operator GonGbytheRayleighquotientRG(f)=RGjrfj2d 2RGf2d 1;f2STheoperator GisthecontinuousversionoftheLaplacian onG.Proposition1:(see[5])TheRayleighquotientRG(f)isminimizedat,andonlyat,edgewiselinearfunc-tionsf2S,i.e.thosefunctionswhoserestrictionstoeachedgearelinear.Theeigenvaluesandeigenfunctionsof Gexistandarethoseof (i.e.therestric-tionsofthe GeigenfunctionstoVaretheLaplacianeigenvectors).OnGwecanavoidtheproblemsthatarisefromthediscretenessofoursituation.Nowthe(proper)nodaldomainsofaneigenfunctionfof Garethecomponentsofthecomplementoff 1(0),i.e.ofthenodalsetoff.Thusanalogouslytotheclassicalsituation(see[2])fvanishesonthe\boundaryofeachnodaldomain.ItmakessensetointroducetheDirichleteigenvalueproblemforgraphswithboundary.AgraphwithboundaryisagraphG(V0[@V;E0[@E)whereeachvertexin@V(boundaryvertex)hasdegree1(i.e.itistheendpointofoneedgenotnecessarilyoflength1)andeachvertexinV0(interiorvertex)hasdegreegreaterthanorequalto2.Eachedgee2E0(interioredge)joinstwointeriorvertices,eachedgee2@E(boundaryedge)connectsaninteriorvertexwithaboundaryvertex.Onsuchagraphwecande nethe\DirichletoperatorbyrestrictingfintheRayleighquotientRG(f)tothosefunctionsf2Swhichvanishatallbound-aryvertices.ThentheDirichleteigenvalueproblemisto ndtheeigenvaluesandeigenfunctionsofthisoperator.Equivalentlywecande nethisLaplacianoperatoronagraphwithboundarybyalinearoperatorthatactsontheinteriorverticesofGonly,i.e.onV0: 0=D0 A02Leydold:AFaber-Krahn-typeinequalityforregulartreeswhereA0istheadjacencymatrixrestrictedtoV0andwhereD0isthediagonalmatrixwhoseentrycorrespondingtov2V0is(noteE=E0[@E)(D0)v;v=Xe=(v;u)2E1ceOurgoalisto ndtheeigenvaluesandeigenvectorsofthisLaplacian.IfwenowinsertnewverticesoneachpointinGwheretheeigenfunctionfvanishes,thentheclosureofeachnodaldomainoffisthegeometricrealizationofagraph.Therestrictionofftothisgraph(i.e.thenodaldomain)isaneigenfunctiontothe rstDirichleteigenvalueofthisgraph.Sincethereisnoriskofconfusion,wedenotetheLaplacianonagraphwithboundaryGsimplyby = (G).WedenotethelowestDirichleteigenvalueofGby (G).Wethenhavethefollowingpropertiesof .Proposition2:(see[5])LetGbeagraphwithboundary.(1) (G)isapositiveoperator,i.e. (G)0.(2)Aneigenfunctionftotheeigenvalue (G)of (G)iseitherpositiveorneg-ativeonallinteriorverticesofG.(3) (G)iscontinuousasafunctionofGinthemetric (G;G0)= 2(G G0)+ 2(G0 G).(4) (G)ismonotoneinG,i.e.ifG G0then (G) (G0).(5) (G)isasimpleeigenvalue,ifGisconnected.Wereferthereaderto[5]fortheproofsandformoredetails.Inthispaperwerestrictourinteresttoregulartreeswithbounda
本文标题:A Faber-Krahn-type inequality for regular trees
链接地址:https://www.777doc.com/doc-3202384 .html