您好,欢迎访问三七文档
CentrumvoorWiskundeenInformaticaNumericalsolutionofsteadyfree-surfaceNavier-StokesflowE.H.vanBrummelenModelling,AnalysisandSimulation(MAS)MAS-R0018June30,2000ReportMAS-R0018ISSN1386-3703CWIP.O.Box940791090GBAmsterdamTheNetherlandsCWIistheNationalResearchInstituteforMathematicsandComputerScience.CWIispartoftheStichtingMathematischCentrum(SMC),theDutchfoundationforpromotionofmathematicsandcomputerscienceandtheirapplications.SMCissponsoredbytheNetherlandsOrganizationforScientificResearch(NWO).CWIisamemberofERCIM,theEuropeanResearchConsortiumforInformaticsandMathematics.Copyright©StichtingMathematischCentrumP.O.Box94079,1090GBAmsterdam(NL)Kruislaan413,1098SJAmsterdam(NL)Telephone+31205929333Telefax+31205924199NumericalSolutionofSteadyFree-SurfaceNavier-StokesFlowE.H.vanBrummelenCWIP.O.Box94079,1090GBAmsterdam,TheNetherlandsABSTRACTNumericalsolutionof owsthatarepartiallyboundedbyafreelymovingboundaryisofgreatpracticalim-portance,e.g.,inshiphydrodynamics.Theusualtimeintegrationapproachforsolvingsteadyviscousfreesurface owproblemshasseveraldrawbacks.Instead,weproposeane cientiterativemethod,whichreliesonadi erentbutequivalentformulationofthefreesurface owproblem,involvingaso-calledquasifree-surfacecondition.Itisshownthatthemethodconvergesifthesolutionissu cientlysmoothintheneighborhoodofthefreesurface.Detailsareprovidedfortheimplementationofthemethodinparnax.Furthermore,wepresentamethodforanalyzingpropertiesofdiscretizationschemesforthefree-surface owequations.Detailednumericalresultsarepresentedfor owoveranobstacleinachannel.Theresultsagreewellwithmeasurementsaswellaswiththepredictionsoftheanalysis,andcon rmthatsteadyfree-surfaceNavier-Stokes owproblemscanindeedbesolvede cientlywiththenewmethod.2000MathematicsSubjectClassi cation:35B20,35R35,65R20,76D05,76D33.KeywordsandPhrases:free-surface ows,incompressibleNavier-Stokesequations,numericalsolutionmeth-ods,discretedispersionrelations.Note:ThisworkwasperformedunderaresearchcontractwiththeMaritimeResearchInstituteNetherlandsandwascarriedoutunderCWI-projectMAS2.1\ComputationalFluidDynamics.1.IntroductionThenumericalsolutionof owsthatarepartiallyboundedbyafreelymovingboundaryisofgreatpracticalimportance.Thenumericaltechniquesavailabletosolvesuchfree-surface ows,canbecate-gorizedintosurfacetrackingmethods,themostprominentbeingthemarkerandcellmethod[13]andthevolumeof uidmethod[15],interfacecapturingmethods,e.g.,[17,21],andsurface ttingmeth-ods[9].Itisgenerallyacknowledgedthatifthefree-boundaryissmooth,inparticularifthesurfacecanberepresentedbyaso-calledheightfunction,surface ttingmethodsareunsurpassedinaccuracy.Sincethefree-surfacesoccurringinmanypracticalapplications,forinstance,shiphydrodynamics,aresmooth,surface ttingmethodshavereceivedmuchattention.Iftime-dependentsurface ttingmethodsareconsidered,generallythereisnoessentialdi erenceinthetreatmentofthefree-surfaceinpotential oworNavier-Stokes ow.Then,independentofthe owmodel,thesolutionofthe owequationsandthegeometryofthefree-boundaryareusuallyseparated.The owequationsareintegratedoverasmalltimeinterval,withthedynamicconditionsimposedatthefree-surface.Subsequently,thepositionofthefreesurfaceisdeterminedthroughthekinematiccondition,employingthenewlycomputedvelocity eld.Forsurface ttingmethodsforsteadyfree-surface ows,suchacommonapproachforviscidandinviscid owsdoesnotexist.Whereasdedicatedtechniqueshavebeendevelopedforsteadypotential ow[5,6,24],methodsforNavier-Stokes owsimplycontinuetheaforementionedtransientprocessuntilasteadystateisreached.In[23]severaldrawbacksofthisprocessarediscussed,suchasslowconvergencetosteadystate.Inparticular,fromtheresultsin[19]oneinfersthatatsubcriticalFroudenumbers,dispersioncausesasymptotictemporalbehavioroftheamplitudeoftransientwavesinRdofO(t (d 1)=2).Hence,iftheobjectiveistoreducetheamplitudeoftransientwavestotheorder2ofspatialdiscretizationerrors,thee ciencyofthetimeintegrationapproachdeterioratesrapidlywithdecreasingmesh-width.Inpracticalcomputations,thousandsoftimestepsareusuallyrequired,renderingthetransientapproachprohibitivelyexpensiveinactualdesignprocesses.Fore ciency,themethodsdevelopedforsteadyfree-surfacepotential owexploitthefactthatduringthesolutionprocessneitherthekinematicnorthedynamicconditionneedstobesatis ed.Insteadofimposingthedynamicconditiononthesub-problems(i.e.,the owproblemscorrespondingtoagivenfree-surfaceposition)andusingthekinematicconditiontodetermineanewapproximationtothefree-surfacelocation,anycombinationofboundaryconditionscanbeimposedonthesub-problemsandanyoperatorthatlocatesthefreesurfacecanbeemployed,providedthatthesub-problemsarewell-posed,theresultingiterativeprocessconvergesandtheconvergedsolutionsatis esboththedynamicandthesteadykinematicconditions.Thispermitstheconstructionofiterativealgorithmsthatforeachsub-problemevaluationprovideamoreaccurateapproximationtothesteadyfree-surfacepositionthanwouldbeobtainediftheusualtime-dependentapproachwerefollowed.E ortscanthenbedirectedtosolvingthesub-problemse ciently.Toreducethecomputationalexpenseofsolvi
本文标题:Numerical solution of steady free-surface Navier-S
链接地址:https://www.777doc.com/doc-3210304 .html