您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 质量控制/管理 > CPK PPK CP CA计算公式
图1为DATAPAQ炉温测试仪SPC数据结果图表图1图2例总和探头1236237224.5207.7905.2探头2238.5240.5233.5207.4919.9探头3241237238208.7924.7探头4236242.5227207.2912.7探头5243237.5232.5207.2920.2探头6242.5242229206.4919.9总和图2为图一数据表d2=2.059c4=0.9213举例探头1:cp=(usl-lsl)╱6R/d2=(250-210)/6x(29.3/2.059)=0.47(上表为四组数据,所以d2=2.059)ca=(USL+LSL)/2-ǖ╱(USL-LSL)/2=(250+210)/2-226.3╱(250-210)/2=0.185cpk=┃(1-ca)┃xcp=┃(1-0.185)┃x0.47=0.383pp=(usl-lsl)╱6S/C4=(250-210)/6x(13.63549/0.9213)=0.49(上表为四组数据,所以C4=0.9213)ppk=┃(1-ca)┃xpp=┃(1-0.185)┃x0.49=0.399举例探头全部:cp=(usl-lsl)╱6R/d2=(250-210)/6x(33.633/2.059)=0.408ca=(USL+LSL)/2-ǖ╱(USL-LSL)/2=(250+210)/2-229.325/(250-210)/2=0.03375cpk=┃(1-ca)┃xcp=┃(1-0.03375)┃x0.408=0.39423pp=usl-lsl╱6S/C4=(250-210)/6x15.35815=0.434ppk=┃(1-ca)┃xpp=┃(1-0.03375)┃x0.434=0.419Cpk=|(1-Ca)|xCpPpk=|(1-Ca)|xPpδ=R/d2Ca(capabilityprocess):制成准确度Cp(CapabilityIndiesofProcess):稳定过程的能力指数,定义为容差宽度除以过程能力,不考虑过程有无偏移Pp(PerformanceIndiesofProcess):过程性能指数,定义为不考虑过程有无偏移时,容差范围除以过程性能CPK(complexprocesscapabilityindex):制成能力控制制成能力是过程性的允许最大变化范围与过程的正常偏差值,CPK值越大表示品质就越差。Ppk(preliminaryprocessindex):这是考虑到过程中心的性能(修正)指数R:极差(最大值与最小值的差)d2:标准差估计值的除数(可查下常数表)S:标准差(可跟据excel的STDEV函数计算的出)C4:标准差估计值的除数(可差下表)X:是数据的一个平均值USL:控制规格上线LSL:控制规格下线:所有探头标准差的平均值:所以探头极差的平均值:所有探头数据的平均值控制图的常数和公式表X-R图均值X图全距R图子组容量计算控制限用的系数标准差估计值的除数计算控制限用的系数nA2d2D3D421.8801.128-3.26731.0231.693-2.57140.7292.059-2.28250.5772.326-2.11460.4832.543-2.00470.4192.7040.0761.92480.3732.8470.1361.86490.3372.9700.1841.816100.3083.0780.2231.777110.2853.1730.2561.744120.2663.2580.2831.717130.2493.3360.3071.693140.2353.4070.3281.672150.2233.4720.3471.653160.2123.5320.3631.637170.2033.5880.3781.622180.1943.6400.3911.608190.1873.6890.4031.597200.1803.7350.4151.585210.1733.7780.4251.575220.1673.8190.4341.566230.1623.8580.4431.557240.1573.8950.4511.548250.1533.9310.4591.541RXS29.3226.313.635492932.6229.7515.3352263332.3231.7515.0794285935.3228.17515.3597688835.823015.8254015236.5229.9750201.81375.9592.14889758=33.633=229.32515.3581496USL=250LSL=210cp=(usl-lsl)╱6R/d2=(250-210)/6x(29.3/2.059)=0.47(上表为四组数据,所以d2=2.059)ca=(USL+LSL)/2-ǖ╱(USL-LSL)/2=(250+210)/2-226.3╱(250-210)/2=0.185cpk=┃(1-ca)┃xcp=┃(1-0.185)┃x0.47=0.383pp=(usl-lsl)╱6S/C4=(250-210)/6x(13.63549/0.9213)=0.49(上表为四组数据,所以C4=0.9213)ppk=┃(1-ca)┃xpp=┃(1-0.185)┃x0.49=0.399cp=(usl-lsl)╱6R/d2=(250-210)/6x(33.633/2.059)=0.408ca=(USL+LSL)/2-ǖ╱(USL-LSL)/2=(250+210)/2-229.325/(250-210)/2=0.03375cpk=┃(1-ca)┃xcp=┃(1-0.03375)┃x0.408=0.39423pp=usl-lsl╱6S/C4=(250-210)/6x15.35815=0.434ppk=┃(1-ca)┃xpp=┃(1-0.03375)┃x0.434=0.419Cpk=|(1-Ca)|xCpPpk=|(1-Ca)|xPpδ=S/c4X=ǖCp(CapabilityIndiesofProcess):稳定过程的能力指数,定义为容差宽度除以过程能力,不考虑过程有无偏移Pp(PerformanceIndiesofProcess):过程性能指数,定义为不考虑过程有无偏移时,容差范围除以过程性能CPK(complexprocesscapabilityindex):制成能力控制制成能力是过程性的允许最大变化范围与过程的正常偏差值,CPK值越大表示品质就越差。Ppk(preliminaryprocessindex):这是考虑到过程中心的性能(修正)指数S:标准差(可跟据excel的STDEV函数计算的出)X:是数据的一个平均值:所以探头极差的平均值X-R图X-s图均值X图标准差S图计算控制限用的系数标准差估计值的除数计算控制限用的系数A3c4B3B42.6590.7979-3.2761.9540.8862-2.5681.6280.9213-2.2661.4270.9400-2.0891.2870.95150.0301.9701.1820.95940.1181.8821.0990.96500.1851.8151.0320.96930.2391.7610.9750.97270.2841.7160.9270.97540.3211.6790.8860.97760.3541.6400.8500.97940.3821.6180.8170.98100.4061.5940.7890.98230.4281.5720.7630.98350.4481.5520.7390.98450.4461.5340.7180.98540.4821.5180.6980.98620.4971.5030.6800.98690.5101.4900.6630.98760.5231.4770.6470.98820.5341.4660.6330.98870.5451.4550.6190.98920.5551.4450.6060.98960.5651.435
本文标题:CPK PPK CP CA计算公式
链接地址:https://www.777doc.com/doc-3221573 .html