您好,欢迎访问三七文档
当前位置:首页 > 电子/通信 > 综合/其它 > 通信08专业综合实验
第1页共10页目录目录.........................................................................................................11DSP的应用........................................................................错误!未定义书签。1.1DSP概况..................................................................错误!未定义书签。1.2DSP的历史..............................................................错误!未定义书签。1.3DSP的现状..............................................................................................31.4DSP的微处理器......................................................................................32嵌入式应用........................................................................................................52.1嵌入式系统简介......................................................................................52.2实时系统的特性......................................................错误!未定义书签。2.3理解任务要求..........................................................................................63ZigBee应用........................................................................................................73.1ZigBee的技术简介..................................................................................73.2ZigBee的协议的概述..............................................................................73.3Zigbee技术的应用..................................................................................83.4物理层服务规范………………………………………………………8参考文献..............................................................................................................10第2页共10页1、DSP技术应用数字信号处理是将信号以数字的方式表示并处理的理论和技术。数字信号处理与模拟信号处理是信号处理的子集。数字信号处理的目的是对真实世界的连续模拟信号进行测量或滤波。因此在进行数字信号处理之前需要将信号从模拟域转换到数字域,这通常通过模数转换器实现。而数字信号处理的输出经常也要变换到模拟域,这是通过模数转换器实现的。数字信号处理的算法需要利用计算机或专用设备如数字信号处理器(DSP)和专用集成电路(ASIC)等。数字信号处理技术及设备具有灵活、精确、抗干扰强、设备尺寸小、造价低、速度快等突出优点,这些都是模拟信号处理技术与设备所无法比拟的。1.1、DSP概况数字信号处理是围绕着数字信号处理的理论、实现和应用等几个方面发展起来的。数字信号处理在理论上的发展推动了数字信号处理应用的发展。反过来,数字信号处理的应用又促进了数字信号处理理论的提高。而数字信号处理的实现则是理论和应用之间的桥梁。数字信号处理是以众多学科为理论基础的,它所涉及的范围极其广泛。例如,在数学领域,微积分、概率统计、随机过程、数值分析等都是数字信号处理的基本工具,与网络理论、信号与系统、控制论、通信理论、故障诊断等也密切相关。近来新兴的一些学科,如人工智能、模式识别、神经网络等,都与数字信号处理密不可分。可以说,数字信号处理是把许多经典的理论体系作为自己的理论基础,同时又使自己成为一系列新兴学科的理论基础。1.2、DSP历史世界上第一个单片DSP芯片应当是1978年AMI公司发布的S2811,1979年美国Intel公司发布的商用可编程器件2920是DSP芯片的一个主要里程碑。这两种芯片内部都没有现代DSP芯片所必须有的单周期乘法器。1980年,日本NEC公司推出的μPD7720是第一个具有乘法器的商用DSP芯片。第3页共10页1.3、DSP现状在这之后,最成功的DSP芯片当数美国德州仪器公司(TexasInstruments,简称TI)的一系列产品。TI公司在1982年成功推出其第一代DSP芯片TMS32010及其系列产品TMS32011、TMS320C10/C14/C15/C16/C17等,之后相继推出了第二代DSP芯片TMS32020、TMS320C25/C26/C28,第三代DSP芯片TMS320C30/C31/C32,第四代DSP芯片TMS320C40/C44,第五代DSP芯片TMS320C5X/C54X,第二代DSP芯片的改进型TMS320C2XX,集多片DSP芯片于一体的高性能DSP芯片TMS320C8X以及目前速度最快的第六代DSP芯片TMS320C62X/C67X等。TI将常用的DSP芯片归纳为三大系列,即:TMS320C2000系列(包括TMS320C2X/C2XX)、TMS320C5000系列(包括TMS320C5X/C54X/C55X)、TMS320C6000系列(TMS320C62X/C67X)。如今,TI公司的一系列DSP产品已经成为当今世界上最有影响的DSP芯片。TI公司也成为世界上最大的DSP芯片供应商,其DSP市场份额占全世界份额近50%。1.4、DSP微处理器DSP(digitalsignalprocessor)是一种独特的微处理器,是以数字信号来处理大量信息的器件。其工作原理是接收模拟信号,转换为0或1的数字信号,再对数字信号进行修改、删除、强化,并在其他系统芯片中把数字数据解译回模拟数据或实际环境格式。它不仅具有可编程性,而且其实时运行速度可达每秒数以千万条复杂指令程序,远远超过通用微处理器,是数字化电子世界中日益重要的电脑芯片。它的强大数据处理能力和高运行速度,是最值得称道的两大特色。DSP微处理器(芯片)一般具有如下主要特点:1.在一个指令周期内可完成一次乘法和一次加法;2.程序和数据空间分开,可以同时访问指令和数据;3.片内具有快速RAM,通常可通过独立的数据总线在两块中同时访问;4.具有低开销或无开销循环及跳转的硬件支持;5.快速的中断处理和硬件I/O支持;6.具有在单周期内操作的多个硬件地址产生器;第4页共10页7.可以并行执行多个操作;8.支持流水线操作,使取指、译码和执行等操作可以重叠执行。当然,与通用微处理器相比,DSP微处理器(芯片)的其他通用功能相对较弱些。DSP优点:对元件值的容限不敏感,受温度、环境等外部参与影响小;容易实现集成;可以分时复用,共享处理器;方便调整处理器的系数实现自适应滤波;可实现模拟处理不能实现的功能:线性相位、多抽样率处理、级联、易于存储等;可用于频率非常低的信号。DSP缺点:需要模数转换;受采样频率的限制,处理频率范围有限;数字系统由耗电的有源器件构成,没有无源设备可靠。但是其优点远远超过缺点。随着嵌入式实时系统复杂度的提高,设计工程师在定义和分析系统初始要求时必须认真考虑软硬件的协同关系。通常设计工程师还必须权衡系统的灵活性、速度、成本、计划和可用工具之间的关系。本文打算描述嵌入式系统和实时系统的关键特性,并探讨在选择或开发硬件和软件组件的基础上开发高效嵌入式系统的解决方案,同时详细说明嵌入式系统和实时系统开发所特有的关键工艺技术。嵌入式系统通常是一个包含微处理器的特殊计算机系统,是一个较大系统或设备的组成部分,它在很大程度上决定了设备的功能特性。许多具备数字接口的设备如微波设备、录像机(VCR)和汽车等都会用到嵌入式系统。有些嵌入式系统需要使用操作系统,有些则用单个程序实现整个逻辑,但所有嵌入式系统提供的功能都要比通用计算系统更专业些。嵌入式系统功能包括:1.监视环境-从输入传感器读取数据,然后处理数据并显示结果。2.控制环境-产生并向激励器发送命令。3.转换信息-转换并处理收集到的数据。虽然通过传感器和激励器完成与外部世界的交互是嵌入式系统的重要特第5页共10页点,但这些嵌入式系统还提供适合它们所在设备的特殊功能。嵌入式系统一般用来执行控制程序、有限状态机和信号处理算法。这些系统还必须检测内部计算环境和周围电磁系统中发生的故障并对此做出响应。2.嵌入式应用2.1嵌入式系统简介嵌入式系统的设计挑战是使嵌入式系统的独特性能与设备的特殊约束条件相一致。以下是一些嵌入式系统的重要特性:1.特殊应用系统-嵌入式系统不同于通用处理器,它针对特殊应用进行了优化。2.反应性系统-反应性计算的意思是系统(主要是软件部分)根据传感器信息对环境作出响应,并利用激励器控制环境,同时系统速度能与环境速度同步。3.分布式-嵌入式系统的一般特征是多个通信进程在多个通过通信链路链接的CPU或ASIC上运行。4.异类性-不同的嵌入式系统一般具有不同的结构,以便在处理严格设计约束的嵌入式系统时能够提供更好的设计便利性。2.2实时系统的特性实时系统要求在外部环境指定的时间间隔内对来自环境的激励信号作出响应(包括物理时间的过渡)。从输入时间到输出时间的延迟必须足够小,以满足可以接受的时间值。通常实时系统需要对环境作出连续及时的响应。计算的正确性不仅依赖于结果,而且取决于输出发生的时间。一个实时系统必须满足有限响应时间约束条件,否则会产生严重的后果。如果后果是性能的劣化而不是故障,那么这种系统可以看作是一个软实时系统。如果后果是系统发生故障,那么这种系统就是一种硬实时系统。实时系统有反应式和嵌入式两种类型。反应式实时系统会与环境发生连续的互作用,而嵌入式实时系统主要用于控制大型系统中安装的特殊硬件。第6页共10页嵌入式系统开发生命周期许多系统设计工程师都会经历硬件/软件协同设计的过程(图1),此过程中硬件与软件将同时进行开发。理解硬件与软件功能相互之间的关系及界限有助于确保设计要求得到完整正确的理解和实现。早在设计要求的定义与分析阶段,系统开发人员就必须与设计工程师协同分配硬件或/和软件方面的要求。这种分配的依据是早期系统仿真、原型设计和行为建模结果、工程师自己的经验以及上文提及的各种因素权衡结果(图2)。一旦分配结束,就可以立即着手具体的设计和实现。实时系统开发中软硬件的并行设计会使用到各种分析技术,包括:1.硬件与软件仿真;2.硬件/软件协同仿真;3.可调度的建模技术,如速率恒定分析;4.原型设计和渐进式开发。可以在各种抽象层次使用的仿真技术主要用于开展早期的性能评估。低层仿真可以用来为总线宽度和数据流程建模,这对性能评估是非常有用的。高层仿真可以满足功能的交互,并促成硬件/软件权衡研究及有效性设计。利用仿真可以将一个复杂
本文标题:通信08专业综合实验
链接地址:https://www.777doc.com/doc-323066 .html