您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 2018-2019学年江苏省苏州市高二上学期期末考试数学试题-解析版
1绝密★启用前江苏省苏州市2018-2019学年高二上学期期末考试数学试题评卷人得分一、填空题1.命题:,的否定是______.【答案】【解析】试题分析:根据特称命题的否定为全称命题,可知命题“”的否定是“”.考点:全称命题与特称命题.2.在平面直角坐标系xOy中,抛物线的焦点坐标为______.【答案】【解析】【分析】利用抛物线的标准方程,可得p,进而可求解焦点坐标.【详解】抛物线y2=8x的开口向右,P=4,所以抛物线的焦点坐标(2,0).故答案为:(2,0).【点睛】本题考查抛物线的简单性质的应用,是基本知识的考查,属于基础题.3.在平面直角坐标系xOy中,三点,,共线,则实数a的值为___.【答案】【解析】【分析】根据斜率的公式以及三点共线得到关于a的方程,解出即可.【详解】由题意得:2,解得:a,故答案为:.【点睛】本题考查了三点共线问题,考查直线的斜率问题,属于基础题.4.在平面直角坐标系xOy中,方程表示的曲线是双曲线,则实数k的取值范围是____.【答案】或【解析】【分析】由双曲线方程的特点可得(2﹣k)(k﹣1)<0,解之可得k的范围.【详解】若方程表示的曲线为双曲线,则(2﹣k)(k﹣1)<0,即(k﹣2)(k﹣1)>0,解得k<1或k>2,故答案为:k<1或k>2.【点睛】本题考查双曲线的标准方程的应用,得出(2﹣k)(k﹣1)<0是解决问题的关键,属于基础题.5.在平面直角坐标系xOy中,点在直线上,则OP的最小值为______.【答案】【解析】【分析】OP的最小值为点O(0,0)到直线x+y﹣4=0的距离.【详解】∵在平面直角坐标系xOy中,点P(x,y)在直线x+y﹣4=0上,3∴OP的最小值为点O(0,0)到直线x+y﹣4=0的距离:d2.故答案为:2.【点睛】本题考查两点间的距离的最小值的求法,考查点到直线的距离公式等基础知识,考查运算求解能力,是基础题.6.在平面直角坐标系xOy中,,,则以线段AB为直径的圆的标准方程为______.【答案】【解析】【分析】求出线段AB的中点为圆心,半径为|AB|,再写出圆的标准方程.【详解】A(﹣2,0),B(2,2),则以线段AB为直径的圆的圆心为C(0,1),半径为r|AB|,∴所求的圆的标准方程为x2+(y﹣1)2=5.故答案为:x2+(y﹣1)2=5.【点睛】本题考查了圆的标准方程与应用问题,考查了两点间的距离公式,是基础题.7.函数的单调递增区间为______.【答案】【解析】【分析】求出函数的导数,由导数大于0,结合指数函数的单调性,解不等式即可得到所求增区间.【详解】4函数f(x)=ex﹣x的导数为f′(x)=ex﹣1,由f′(x)>0,即ex﹣1>0,ex>1=e0,解得x>0,故答案为:(0,+∞).【点睛】本题考查导数的运用:求单调区间,考查运算能力,属于基础题.8.已知直线l,m及平面,,,则“”是“”的______条件请用“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”填空【答案】必要不充分【解析】【分析】由线面垂直的性质定理可知:若“l⊥又m⊂,得:“l⊥m”是“l⊥”的必要条件,反之,当l时,内仍有直线与l垂直,得“l⊥m”时,可能直线l,所以不充分.【详解】由“l⊥“则直线l垂直平面中的任意直线,又m⊂,则“l⊥m”,即“l⊥m”是“l⊥”的必要条件,反之,当l时,内仍有直线与l垂直,即“l⊥m”可能有l成立,所以“l⊥m”是“l⊥”的不充分条件,即“l⊥m”是“l⊥”的必要不充分条件,故答案为:必要不充分条件【点睛】本题考查了直线与平面垂直的判定,充分、必要条件,属于简单题.9.九章算术是我国古代数学名著,它在几何学中的研究比西方早一千多年例如:“堑堵”指底面为直角三角形,且侧棱垂直于底面的三棱柱;“阳马”指底面为矩形,一侧棱垂直于底面的四棱锥如图,在“堑堵”中,,若“阳马”的体积为,则“堑堵”的体积为______.5【答案】30【解析】【分析】连接A1,C,把三棱柱分为体积相等的三个三棱锥,则可求解.【详解】如图,连接A1C,根据等底等高,易得:,∵B﹣A1ACC1的体积为20cm3,∴ABC﹣A1B1C1的体积为30cm3,故答案为:30.【点睛】本题考查了三棱柱的结构及体积的求法,将其分割成三个三棱锥是解题的关键,考查了三棱锥的体积公式,属于基础题.10.如图,在平面直角坐标系xOy中,点A,F分别是椭圆的右顶点和右焦点,点B,C分别是椭圆的上、下顶点若,则该椭圆离心率为______.6【答案】【解析】【分析】利用已知条件AB⊥CF,利用斜率之积为-1,列出方程,求出椭圆的离心率即可.【详解】在平面直角坐标系xOy中,点A,F分别是椭圆的右顶点和右焦点,点B,C分别是椭圆的上、下顶点.若AB⊥CF,可得:•1,可得b2=ac=a2﹣c2,可得e2+e﹣1=0,e∈(0,1),解得e.故答案为:.【点睛】本题考查椭圆的简单性质的应用,注意垂直条件的合理转化,考查转化思想以及计算能力.11.设是两条不同的直线,,是两个不同的平面下列命题中:若,,则;若,,则;若,,则.7正确命题的序号是______.【答案】【解析】【分析】在中,与相交、平行或异面;在中,或;在中,由面面平行的性质定理得.【详解】解:由是两条不同的直线,,是两个不同的平面,知:在中,若,,则与相交、平行或异面,故错误;在中,若,,则或,故错误;在中,若,,则由面面平行的性质定理得,故正确.故答案为:.【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.12.已知是函数的切线,则的最小值为______.【答案】【解析】【分析】根据题意,设切线的坐标为(m,lnm+m),求出函数f(x)的导数,由导数的几何意义可得切线的方程,分析可得k1,b=lnm﹣1,代入化简得到lnm1,设g(m)=lnm1,求出g′(m),利用函数的导数与单调性的关系,分析可得g(m)的最小值,即可得答案.【详解】根据题意,直线y=kx+b与函数f(x)=lnx+x相切,设切点为(m,lnm+m),函数f(x)=lnx+x,其导数f′(x)1,则f′(m)1,8则切线的方程为:y﹣(lnm+m)=(1)(x﹣m),变形可得y=(1)x+lnm﹣1,又由切线的方程为y=kx+b,则k1,b=lnm﹣1,则2k+b2+lnm﹣1=lnm1,设g(m)=lnm1,其导数g′(m),在区间(0,2)上,g′(m)<0,则g(m)=lnm1为减函数,在(2,+∞)上,g′(m)>0,则g(m)=lnm1为增函数,则g(m)min=g(2)=ln2+2,即2k+b的最小值为ln2+2;故答案为:ln2+2.【点睛】本题考查利用导数分析切线的方程以及函数的单调性与最值,关键是掌握导数的几何意义.13.在平面直角坐标系xOy中,已知圆C:和点,,若在圆C上存在点P,使得,则半径r的取值范围是______.【答案】【解析】【分析】点A(0,),B(0,),求出点P的轨迹方程,使得∠APB=60°,通过两个圆的位置关系转化成求解半径r的取值范围.【详解】在平面直角坐标系xOy中,点A(0,),B(0,),使得∠APB=60°,可知P在以AB为弦的一个圆上,圆的圆心在AB的中垂线即x轴上,半径为:2,由垂径定理可得圆心到y轴的距离为1,所以圆心坐标为(-1,0)或(1,0)9则P的方程为:(x﹣1)2+y2=22,或:(x+1)2+y2=22,已知圆C:(x﹣3)2+(y﹣4)2=r2,若在圆C上存在点P,使得∠APB=60°,就是两个圆有公共点,可得:r+2,并且解得r∈[2,42].故答案为:[2,42].【点睛】本题考查直线与圆的方程的应用,考查转化思想以及计算能力,中档题.14.若函数有三个不同的零点,则实数a的取值范围是___.【答案】【解析】【分析】求出导函数,利用函数的极值的符号,列出不等式组求解即可.【详解】f(x)=(x﹣1)(x﹣a)2﹣a+1,∴f′(x)=(x﹣a)(3x﹣a﹣2)令f′(x)=0,解得x=a或x,∵f(x)=(x﹣1)(x﹣a)2﹣a+1有三个不同的零点,∴f(x)极大值f(x)极小值<0,∴f(a)f()<0,即(﹣a+1)[(1)(a)2﹣a+1]<0,整理可得(a﹣1)2()>0,即4(a﹣1)2﹣27>0且a,解得a<1或a>110故答案为:(﹣∞,1)∪(1,+∞)【点睛】本题考查了函数的零点与方程的根的关系应用.函数的导数的应用,极值的求法,考查分析问题、解决问题的能力.评卷人得分二、解答题15.如图,在平面直角坐标系xOy中,已知等腰梯形ABCD,,,,以A,B为焦点的双曲线过C,D两点.求双曲线的方程;写出该双曲线的离心率和渐近线方程.【答案】(1)(2)离心率,渐近线方程为【解析】【分析】(1)由勾股定理求得等腰梯形的高,求出A,B,C,D的坐标,可得CA,CB的距离,由双曲线的定义可得a,再由a,b,c的关系可得b,即可得到双曲线的方程;(2)由离心率公式和渐近线方程即可得到所求.【详解】(1)因为等腰梯形,,,,.所以,,,.所以,.11因为,所以.又因为,为双曲线(,)的焦点,所以,所以.所以.所以双曲线的方程为.(2)由(1)知,所以双曲线的离心率.又双曲线的渐近线方程为.【点睛】本题考查双曲线的定义和方程、性质,考查待定系数法和方程思想,以及运算能力,属于基础题.16.如图,AC,DF分别为正方形ABCD和正方形CDEF的对角线,M,N分别是线段AC,DF上的点,且,.证明:平面BCF;证明:.【答案】(1)详见解析(2)详见解析【解析】【分析】(1)取DC的三等分点P,通过平面MNP∥平面FCB可得线面平行;(2)利用DC垂直平面FBC,得到CD⊥平面MNP,易证.【详解】12(1)取DC的三等分点P,使DP,∵,∴MP∥AD,∴MP∥BC,∴MP∥平面FBC,∵,∴NP∥FC,∴NP∥平面FBC,∴平面MNP∥平面FBC,∴MN∥平面FBC;(2)∵CD⊥CB,CD⊥CF,∴CD⊥平面FBC,∴CD⊥平面MNP,∴CD⊥MN,即MN⊥DC【点睛】本题考查了线面平行,线面垂直的判定定理,考查了面面平行及线面垂直的性质定理,属于基础题.17.在平面直角坐标系xOy中,已知圆C:.若圆C的切线l在x轴和y轴上的截距相等,且截距不为零,求切线l的方程;已知点为直线上一点,由点P向圆C引一条切线,切点为M,若,求点P的坐标.13【答案】(1)或;(2)点的坐标为或.【解析】【分析】(1)根据题意,利用待定系数法给出切线的截距式方程,然后再利用圆心到切线的距离等于半径列方程求系数即可;(2)根据题意,由直线与圆的位置关系可得PM2=PC2﹣MC2,又由PMPO,则2PO2=PC2﹣MC2,代入点的坐标变形可得:x12+y12﹣2x1+4y1﹣3=0,①,又由点P(x1,y1)为直线y=2x﹣6上一点,则y1=2x1﹣6,②,联立①②,解可得x1的值,进而计算可得y1的值,即可得答案.【详解】(1)将圆化标准方程为,所以圆心,半径.又因为圆的切线在轴和轴上的截距相等,且截距不为零,所以设切线的方程为.因为直线与圆相切,所以圆心到直线的距离等于半径,即.解得:或.所以切线的方程为或.(2)因为为切线且为切点,所以.又因为,所以.又因为,,所以,化简可得:①;因为点在直线上,所以②.14联立①②可得:,消去可得:,解得或.将代入②可得:,所以点的坐标为.将代入②可得,所以点的坐标为.综上可知,点的坐标为或.【点睛】本题考查直线与圆的方程以及应用,涉及直线与圆的位置关系,直线与圆相切的性质,属于基础题.18.光对物体的照度与光的强度成正比,比例系数为,与光源距离的平方成反比,比例系数为均为正常数如图,强度分别为8,1的两个光源A,B之间的距离为10,物体P在连结两光源的线段AB上不含A,若物体P到光源A的距离为x.试将物体P受到A,B两光源的总照度y表示为x的函数,并
本文标题:2018-2019学年江苏省苏州市高二上学期期末考试数学试题-解析版
链接地址:https://www.777doc.com/doc-3234678 .html