您好,欢迎访问三七文档
当前位置:首页 > 机械/制造/汽车 > 汽车理论 > 06小波变换压缩算法解析
第6章小波变换压缩算法主要内容小波变换用于图像压缩的理由傅里叶变换窗口傅里叶变换小波变换的原理小波变换实例小波变换与数据压缩2小波变换用于图像压缩的理由基于DCT(DiscreteCosineTransform)的压缩标准JPEGMPEG-1,MPEG-2,H.264DCT压缩的优点简单、便于硬件实现3小波变换用于图像压缩的理由DCT压缩的缺点图像是分块处理,沿块的边界方向相关性被破坏,出现“blockingartifacts”4傅里叶变换信号表示多种方式信号的描述:例如一个函数表达式,这就是信号的时域表示,傅里叶变换1822年,傅里叶提出频率的概念:通过傅里叶正变换将信号在频域分解,获得信号的频谱,再通过反变换重建原始信号。频率仍然是傅里叶变换所定义。()()1()()2jtjtFftedtftFed5傅里叶变换傅里叶变换的特点具有频域准确定位,可分析信号能量在各个频域成分中的分布情况,最常用的、最广泛的信号分析工具,并且相关的理论研究已发展为一个重要的数学分支——调和分析。6傅里叶变换傅里叶变换的不足缺乏时间-频率的定位功能不适于非平稳信号无法根据信号的特点自动调节时域和频域的分辨率7傅里叶变换的不足成为了推动寻找新变换的动力窗口傅里叶变换窗口傅里叶变换(shorttimeFouriertransform)1946年Gabor提出了短时傅里叶变换的概念,从而开始了非平稳信号的时频联合分析1()(,)()2jtftGgteddAw=wt-twtpò(,)()()jtGftgtedt-wwt=-tò8窗口傅里叶变换窗口傅里叶变换(shorttimeFouriertransform)9窗口傅里叶变换窗口傅里叶变换(shorttimeFouriertransform)Gabor变换:时窗函数=Gauss函数时时窗函数的Fourier变换仍然是Gauss函数,保证了窗口傅立叶变换在频域内也有局域化的功能。10窗口傅里叶变换窗口傅里叶变换(shorttimeFouriertransform)时窗(TimeWindow)11窗口傅里叶变换窗口傅里叶变换(shorttimeFouriertransform)频窗(FrequencyWindow)时窗函数g(t)的傅立叶变换,12窗口傅里叶变换窗口傅里叶变换(shorttimeFouriertransform)以上定义知,g(t)和G(ω)分别起着时窗和频窗的作用,在时间-频率坐标系中,时窗和频窗共同作用的结果就构成了时-频窗,这样就从几何上直观地描述了时频局部化。13窗口傅里叶变换窗口傅里叶变换(shorttimeFouriertransform)尽管窗式傅立叶变换能解决变换函数的局域化问题,但是,其窗口的大小和形状是固定的,即窗口面积不变,窗口没有自适应性。对于高频的信息,时间间隔要相对的小,更好地确定峰值和断点,或者说需要用较窄的时域窗来反映信息的高频成分。对于低频谱的信息,时间间隔要相对的宽才能给出完整的信号信息,或者说必须用较宽的时域窗来反映信息的低频成分。14小波变换原理小波变换的(wavelettransform)发展20世纪80年代后期发展起来的小波变换理论它是继傅里叶(JosephFourier)分析后信号处理与分析的强大工具无论是对古老的自然学科还是对新兴的高新技术应用学科都产生了强烈冲击。小波理论是应用数学的一个新领域。要深入理解小波理论需要用到比较多的数学知识。从工程应用角度出发,直观的方法来介绍小波变换及其应用,为读者深入研究小波理论和应用提供一些背景材料15小波变换原理小波变换的(wavelettransform)发展哈尔(AlfredHaar)对在函数空间中寻找一个与傅里叶类似的基非常感兴趣。1909年他发现了小波,1910年被命名为Haarwavelets最早发现和使用了小波的名称16小波变换原理小波变换的(wavelettransform)发展20世纪70年代,当时在法国石油公司工作的年轻的地球物理学家JeanMorlet提出了小波变换CWT(continuouswavelettransform)的概念。法国科学家Y.Meyer创造性地构造出具有一定衰减性的光滑函数,用缩放(dilations)与平移(translations)均为2的j次幂的倍数构造了平方可积的实空间L2(R)的规范正交基,使小波得到真正的发展.S.Mallat于1988年在构造正交小波基时提出了多分辨率分析(multiresolutionanalysis)的概念,从空间上形象地说明了小波的多分辨率的特性,提出了正交小波的构造方法和快速算法,叫做Mallat算法。Mallat算法地位相当于快速傅里叶变换在傅里叶分析中的地位。17小波变换原理小波变换的(wavelettransform)发展1988年InridDaubechies最先揭示了小波变换和滤波器组(filterbanks)之间的内在关系20世纪90年代中期,Sweldens提出了小波变换提升方案---第二代小波变换,用于JPEG2000小波在信号(如声音信号,图像信号等)处理中得到极其广泛的应用。18小波变换原理小波变换的(wavelettransform)发展小波变换具有在不同尺度下保持时频分析窗口面积不变性质自动调节对信号分析的时宽和带宽被誉为信号分析的显微镜19小波变换原理连续小波变换(continuouswavelettransform)小波(Wavelet(Asmallwave,aripple)就是小的波形,所谓小,就是它具有衰减性,是存在于一个较小区域的波。20小波变换原理连续小波变换变换(continuouswavelettransform)小波基函数21小波变换原理连续小波变换(continuouswavelettransform)小波正变换小波反变换22标注:a=scalevariable-缩放因子b=timeshift-时间平移在CWT中,缩放和平移是连续变化的小波变换原理连续小波变换(continuouswavelettransform)函数的伸缩23小波变换原理连续小波变换(continuouswavelettransform)小波函数的伸缩24小波变换原理连续小波变换(continuouswavelettransform)25时窗中心:小波的时窗中心是其母函数的时窗中心乘倍再平移个单位小波的时窗宽度是其母函数的时窗宽度的倍。小波变换原理连续小波变换(continuouswavelettransform)小波的频窗中心是其母函数的频窗中心的倍小波的频窗宽度是其母函数的频窗宽度的倍1ay=Dw26小波变换原理连续小波变换(continuouswavelettransform)用较小对信号做高频分析时,实际是用高频小波对信号进行细致观察用较大对信号做低频分析时,实际是用低频小波对信号进行概貌观察1.().().Statta27小波变换原理连续小波变换(continuouswavelettransform)部分小波波形28小波变换原理子带编码SBC(subbandcoding):把信号的频率分成几个子带,然后对每个子带分别进行编码,并根据每个子带的重要性分配不同的位数来表示数据20世纪70年代,子带编码开始用于语音编码20世纪80年代中期开始在图像编码中使用29小波变换原理离散小波变换30图中的符号表示频带降低1/2,HH表示频率最高的子带,LL表示频率最低的子带。这个过程可以重复,直到符合应用要求为止。这样的滤波器组称为分解滤波器树(decompositionfiltertrees)小波变换原理离散小波变换只有离散,小波变换才能应用离散的方式有很多离散小波变换的多分辨率分析Mallat创立了多分辨率分析理论在多分辨率分析基础上,Mallat提出了基于滤波器组实现信号的小波正变换和反变换算法。执行离散小波变换的有效方法31小波变换原理Mallat算法低通滤波器和高通滤波器构成双通道滤波原始的输入信号:S两个互补的滤波器A表示信号的近似值(approximations)D表示信号的细节值(detail)32小波变换原理Mallat算法低通滤波器和高通滤波器构成小波分解树对低频分量连续分解33小波变换原理Mallat算法小波包分解树对低频分量和高频分量均连续分解34小波变换原理Mallat算法下采样过程原始信号的数据样本为1000个,通过滤波之后每一个通道的数据均为1000个,总共为2000个。35小波变换原理Mallat算法下采样过程原始信号的数据样本为1000个,通过滤波之后每一个通道的数据均为1000个,总共为2000个。36小波变换原理Mallat算法下采样过程原始信号的数据样本为1000个,通过滤波之后每一个通道的数据均为1000个,总共为2000个。37小波变换原理Mallat算法下采样过程原始信号的数据样本为1000个,通过滤波之后每一个通道的数据均为1000个,总共为2000个。图中的符号表示下采样。38小波变换实例一维哈尔小波变换哈尔函数定义101()0xx其他39小波变换实例一维哈尔小波变换哈尔函数定义基函数一组线性无关的函数,以用来构造任意给定的信号101()0xx其他40小波变换实例一维哈尔小波变换哈尔基函数最简单的基函数()(2)jjixxi41小波变换实例一维哈尔小波变换哈尔基函数012322221,01/41,1/41/2()()0,0,1,1/23/41,3/41()()0,0,xxxxxxxx其他其他其他其他()(2)jjixxi42小波变换实例一维哈尔小波变换尺度函数:尺度函数尺度函数张成的空间VjVj的基的个数为2j()x()0,,21jjjiVspanxi43()(2),0,1,,(21)jjjixxii()x小波变换实例一维哈尔小波变换小波函数:与尺度函数对应哈尔小波函数与哈尔函数相对应()x101/2()11/210xxx当当其他44小波变换实例一维哈尔小波变换小波函数:与尺度函数对应哈尔小波函数与哈尔函数相对应哈尔小波基函数()x101/2()11/210xxx当当其他45()(2),0,,(21)ijjjxxii小波变换实例一维哈尔小波变换小波基函数构成的空间:Wj()0,1,,21jjjiWspanxi46小波变换实例一维哈尔小波变换小波基函数构成的空间:Wj()0,1,,21jjjiWspanxi471W0W0V2V1V小波变换实例一维哈尔小波变换小波基函数构成的空间:Wj()0,1,,21jjjiWspanxi481W0W0V2V1V2001VVWW小波变换实例一维哈尔小波变换生成矢量空间W2的哈尔小波基函数22012223101/812/83/8()11/82/8()13/84/80014/85/816/87/8()15/86/8()17/8100xxxxxxxxxxxx其他其他其他其他49小波变换实例一维哈尔小波变换生成矢量空间W2的哈尔小波基函数50小波变换实例一维哈尔小波变换生成矢量空间W2的哈尔小波基函数51小波变换实例一维哈尔小波变换实例图像=[9735]像素个数:2j=22
本文标题:06小波变换压缩算法解析
链接地址:https://www.777doc.com/doc-3235394 .html