您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 经营企划 > 新课标经典例题――必修5数列
Lovelife第1页共20页数列:1.等差数列{an}中,S150,S160,则使an0成立的n的最大值为()A.6B.7C.8D.9[答案]C[解析]S15=15a80,∴a80,S16=8(a8+a9)0,∴a90,故选C.2.已知正项等比数列{an}中,a1a5=2,则a3=()A.2B.2C.4D.22[答案]A[解析]a23=a1a5=2,∵an0,∴a3=2.3.(文)已知等比数列{an}的前n项的和为Sn,a3=32,S3=92,则公比q=()A.1或-12B.-12C.1D.-1或12[答案]A[解析]当q=1时,a3=32,S3=3a3=92,当q≠1时,由a3=32S3=92得,a1q2=32a11-q31-q=92,Lovelife第2页共20页解得q=-12,∴q=1或-12.(理)等比数列{an}中,a3=6,前三项和S3=034xdx,则公比q的值为()A.1B.-12C.1或-12D.-1或-12[答案]C[解析]S3=034xdx=2x2|30=18,又a3=6,∴a1+a2=12,∴a1q2=6a1+a1q=12,∴q=1或-12.4.如果数列a1,a2a1,a3a2,…,anan-1,…是首项为1,公比为-2的等比数列,则a5等于()A.32B.64C.-32D.-64[答案]A[解析]由条件知,anan-1=1×(-2)n-1=(-2)n-1,∴a5=a1·a2a1·a3a2·a4a3·a5a4=1×(-2)·(-2)2·(-2)3·(-2)4=32,故选A.5.(文)已知等差数列{an}中,a7+a9=16,S11=992,则a12的值是()A.15B.30C.31D.64Lovelife第3页共20页[答案]A[解析]由a7+a9=16S11=992,得2a1+14d=1611a1+55d=992,∴a1=-174d=74,∴a12=a1+11d=15.(理)等差数列{an}前n项和为Sn,满足S20=S40,则下列结论中正确的是()A.S30是Sn中的最大值B.S30是Sn中的最小值C.S30=0D.S60=0[答案]D[解析]∵{an}为等差数列,S20=S40,∴a21+a22+…+a40=0,S60=(a1+a2+…+a20)+(a21+a22+…+a40)+(a41+a42+…+a60)=3(a21+a22+…+a40)=0.6.若Sn是等差数列{an}的前n项和,且S8-S3=10,则S11的值为()A.12B.18C.22D.44[答案]C[解析]∵S8=8a1+8×72d=8a1+28d,S3=3a1+3d,S8-S3=10,Lovelife第4页共20页∴5a1+25d=10,∴a1+5d=2,∴a6=2,∴S11=11a6=22.7.数列{an}的前n项和为Sn,若a1=1,an+1=3Sn(n≥1),则a6=()A.3×44+1B.3×44C.44D.44+1[答案]B[解析]∵an+1=3Sn,∴an=3Sn-1(n≥2),∴an+1-an=3Sn-3Sn-1=3an,∴an+1an=4,又a1=1,a2=3S1=3a1=3,∴an=1n=13×4n-2n≥2,∴a6=3×46-2=3×44,故选B.8.(文)在等差数列{an}中,若a2+a3=4,a4+a5=6,则a9+a10=()A.9B.10C.11D.12[答案]C[解析]∵{an}是等差数列,令bn=an+an+1,则{bn}也是等差数列,b2=a2+a3=4,b4=a4+a5=6,∴公差d=12(b4-b2)=1,∴b9=a9+a10=b2+7d=4+7=11,故选C.(理)已知数列{an}为等比数列,且a5·a9=2π3,则cos(a2·a12)=()A.12B.-12C.32D.-32[答案]BLovelife第5页共20页[解析]∵{an}为等比数列,∴a2a12=a5a9=2π3,∴cos(a2a12)=cos2π3=cos(π-π3)=-12.9.(文)等差数列{an}的前n项和为Sn,S5=15,S9=18,在等比数列{bn}中,b3=a3,b5=a5,则b7的值为()A.23B.43C.2D.3[答案]B[解析]在等差数列{an}中,由5a1+10d=15,9a1+36d=18,,a1=4d=-12,∴a3=3,a5=2.∴b3=3,b5=2,所以b7=b25b3=43.(理)已知数列{an}为等比数列,Sn是它的前n项和.若a2·a3=2a1,且a4与2a7的等差中项为54,则S5=()A.35B.33C.31D.29[答案]C[解析]∵a2·a3=2a1,∴a21q3=2a1,∵a1≠0,∴a1q3=2,即a4=2,又∵a4+2a7=2×54=52,∴a7=14,∴a4q3=14,∴q=12,∴a1=16,∴S5=161-1251-12=31.Lovelife第6页共20页10.(文)在各项均为正数的数列{an}中,对任意m,n∈N*都有am+n=am·an.若a6=64,则a9等于()A.256B.510C.512D.1024[答案]C[解析]由条件知,a3+3=a3·a3,∴a23=64,∵a30,∴a3=8,∴a9=a6+3=a6·a3=64×8=512.(理)已知数列{an},{bn}满足a1=12,an+bn=1,bn+1=bn1-a2n,则b2012=()A.20112012B.20122011C.20122013D.20132012[答案]C[解析]∵an+bn=1,a1=12,∴b1=12,∵bn+1=bn1-a2n,∴b2=b11-a21=23,∴a2=13,b3=b21-a22=34,a3=14,b4=b31-a23=45,a4=15,…,观察可见an=1n+1,bn=nn+1,∴b2012=20122013,故选C.11.数列{an}满足a1=1,a2=1,an+2=(1+sin2nπ2)an+4cos2nπ2,则a9,a10的大小关系为()A.a9a10B.a9=a10C.a9a10D.大小关系不确定Lovelife第7页共20页[答案]C[解析]a3=(1+sin2π2)a1+4cos2π2=2,a4=(1+sin2π)a2+4cos2π=5,a5=(1+sin23π2)a3+4cos23π2=4,易知当n=2k-1(k∈N*)时,an=2k-1,当n=2k(k∈N*)时,an=1+4(k-1),∴a9=25-1=16,a10=1+4×(5-1)=17,∴a9a10.12.(文)已知等差数列{an}的前n项和为Sn,若OB→=a2OA→+a2008OC→,且A、B、C三点共线(O为该直线外一点),则S2009=()A.2009B.20092C.22009D.2-2009[答案]B[解析]∵A、B、C三点共线,∴a2+a2008=1,∵{an}为等差数列,∴S2009=2009×a1+a20092=2009×a2+a20082=20092.(理)等差数列{an}中,ana2n是一个与n无关的常数,则该常数的可能值的集合为()A.{1}B.{1,12}C.{12}D.{0,12,1}[答案]B[解析]设an=a1+(n-1)d,并设ana2n=t(t为常数),则a1+(n-1)d=a1t+(2n-1)dt,分离含n的项得(a1-d)(1-t)=nd(2t-1),∵此式关于n恒成立,∴d=0或2t-1=0,Lovelife第8页共20页①d=0时,a1=0,∴an=a1,t=1,②2t-1=0时,t=12,d=a1,∴an=na1,故选B.13.在递减等差数列{an}中,若a1+a5=0,则Sn取最大值时n等于()A.2B.3C.2或3D.3或4[答案]C[解析]a1+a5=2a3=0,∴a3=0,∵{an}是递减数列,∴a1a2a3=0a4,∴S2=S3且最大,故选C.14.等差数列{an}的前n项和为Sn,若a3+a7+a11=12,则S13等于()A.52B.54C.56D.58[答案]A[解析]∵{an}为等差数列,∴a3+a7+a11=3a7=12,∴a7=4,∴S13=13×a1+a132=13×2a72=52,故选A.15.设等比数列{an}的前n项和为Sn,若a2011=3S2010+2012,a2010=3S2009+2012,则公比q=()A.4B.1或4C.2D.1或2[答案]A[解析]两式相减得a2011-a2010=3a2010,∴a2011a2010=4.16.在等比数列{an}中,a1+an=34,a2·an-1=64,且前n项和Sn=62,Lovelife第9页共20页则项数n等于()A.4B.5C.6D.7[答案]B[解析]a1·an=a2·an-1=64,由a1+an=34a1an=64得a1=2an=32或a1=32an=2,∴qn-1=16或116.当a1=2,qn-1=16时,2×1-16q1-q=62,∴q=2,n=5;当a1=32,qn-1=116时,解得n=5,故选B.17.(文)已知数列{an}的前n项和为Sn=-2n2+3n,则数列{an}的通项公式为________.[答案]an=5-4n[解析]n≥2时,an=Sn-Sn-1=(-2n2+3n)-[-2(n-1)2+3(n-1)]=5-4n,n=1时,a1=S1=1也满足,∴an=5-4n.(理)已知数列{an},其前n项和Sn=n2+n+1,则a8+a9+a10+a11+a12=________.[答案]100[解析]a8+a9+a10+a11+a12=S12-S7=(122+12+1)-(72+7+1)=100.18.在等比数列{an}中,a1=1,公比q=2.若an=64,则n的值为________.[答案]7[解析]an=a1qn-1=2n-1=64,∴n=7.Lovelife第10页共20页19.等差数列{an}中,S10=120,那么a2+a9的值是________.[答案]24[解析]S10=10×a1+a102=5(a2+a9)=120,∴a2+a9=24.20.若数列{an}中,a1=3,an+an-1=4(n≥2),则a2013=________.[答案]3[解析]∵a1=3,an+an-1=4(n≥2),∴a2=4-a1=1,a3=4-a2=3,a4=4-a3=1,a5=4-a4=3,……可见an=3n为奇数1n为偶数,∴a2013=3.21.(文)等差数列{an}中,已知a1=3,a4=12.(1)求数列{an}的通项公式;(2)若a2,a4分别为等比数列{bn}的第1项和第2项,试求数列{bn}的通项公式及前n项和Sn.[解析](1)设数列{an}的公差为d,由已知有a1=3a1+3d=12,解得d=3.∴an=3+(n-1)×3=3n.(2)由(1)得a2=6,a4=12,则b1=6,b2=12,设{bn}的公比为q,则q=b2b1=2,从而bn=6×2n-1=3×2n,所以数列{bn}的前n项和Sn=61-2n1-2=6(2n-1).(理)已知等差数列{an}的前n项和为Sn,且a3=5,S15=225.Lovelife第11页共20页(1)求数列{an}的通项an;(2)设bn=3an+2n,求数列{bn}的前n项和Tn.[解析](1)设等差数列{an}首项为a1,公差为d,由题意得,a1+2d=515a1+15×142d=225,解得a1=1d=2,∴an=2n-1.(2)bn=3an+2n=32n-1+2n=13·9n+2n,∴Tn=b1+b2+…+bn=13(9+92+93+…+9n)+2(1+2+3+…+n)=13·91-9n1-9+n(n+1)=38·9n+n(n+1)-38.22.(文
本文标题:新课标经典例题――必修5数列
链接地址:https://www.777doc.com/doc-3246304 .html