您好,欢迎访问三七文档
当前位置:首页 > 建筑/环境 > 工程监理 > 2.1.2-空间中直线与直线之间的位置关系(2)全解
立体几何2.1.2空间中直线与直线之间的位置关系平面内两条直线的位置关系相交直线相交直线(有一个公共点)abo平行直线平行直线(无公共点)ab复习引入螺母abcdef新课探究观察下列图形,说说空间中两条直线的位置关系探究一立交桥思考:存在不存在一个平面同时过上面两条直线?问题1:在平面几何中,两直线的位置关系如何?讲授新课问题2:没有公共点的直线一定平行吗?问题3:没有公共点的两直线一定在同一平面内吗?abcd1.异面直线的定义:不同在任何一个平面内的两条直线叫做异面直线。1)异面直线既不平行也不相交一、空间两条直线的位置关系2)定义中“任何”是指两条直线永远不具备确定平面的条件,即是不可能找到一个平面同时包含这两条直线;不能认为分别在两个平面内的两条直线叫异面直线。a与b是相交直线a与b是平行直线a与b是异面直线abM它们可能异面,可能相交,也可能平行。abab,,baC1D1C1B1ADBAab它们可能异面,可能相交,也可能平行。也不能认为不在同一平面内的两条直线叫异面直线。说明:画异面直线时,为了体现它们不共面的特点。常借助一个或两个平面来衬托.如图:aabaAbb(1)(3)(2)3)异面直线的画法4)异面直线的判定方法:①不同在任何一个平面内。②既不相交也不平行的直线。③连结平面内一点与平面外一点的直线,和这个平面内不经过此点的直线是异面直线。,,,ABaBa已知:如图求证:直线AB和a是异面直线。BAa证明:(反证法)假设直线AB和a不是异面直线。则直线AB和a一定共面,设为,Ba,BaQ又aB与确定一平面(公理2的推论1)与重合,A,所以直线AB和a是异面直线。这与已知A∉α矛盾,按平面基本性质分同在一个平面内相交直线平行直线不同在任何一个平面内:异面直线有一个公共点:按公共点个数分相交直线无公共点平行直线异面直线2、空间中直线与直线之间的位置关系A1B1C1D1CBDA练习1、如图所示:正方体的棱所在的直线中,与直线A1B异面的有哪些?答案:D1C1、C1C、CD、D1D、AD、B1C1A1B1C1D1CBDA练习1、如图所示:正方体的棱所在的直线中,与直线A1B异面的有哪些?D1C1B1A1DCBA异面的棱有:如图在正方体中,与练习1BD2CDCCCBBAADAA,,,,,111111下图长方体中平行相交异面②BD和FH是直线①EC和BH是直线③BH和DC是直线BACDEFHG(2).与棱AB所在直线异面的棱共有条?4分别是:CG、HD、GF、HE课后思考:这个长方体的棱中共有多少对异面直线?(1)说出以下各对线段的位置关系?练习31.画两个相交平面,在这两个平面内各画一条直线,使它们成为:⑴平行直线;⑵相交直线;⑶异面直线.巩固:1.画两个相交平面,在这两个平面内各画一条直线,使它们成为:⑴平行直线;⑵相交直线;⑶异面直线.ab⑴巩固:1.画两个相交平面,在这两个平面内各画一条直线,使它们成为:⑴平行直线;⑵相交直线;⑶异面直线.abab⑴⑵巩固:1.画两个相交平面,在这两个平面内各画一条直线,使它们成为:⑴平行直线;⑵相交直线;⑶异面直线.ababab⑴⑵⑶巩固:2.两条异面直线指:A.空间中不相交的两条直线;B.不在同一平面内的两条直线;C.不同在任一平面内的两条直线;D.分别在两个不同平面内的两条直线;E.空间没有公共点的两条直线;F.既不相交,又不平行的两条直线.巩固:()填空:1、空间两条不重合的直线的位置关系有________、________、________三种。2、没有公共点的两条直线可能是________直线,也有可能是________直线。3、和两条异面直线中的一条平行的直线与另一条的位置关系有______________。平行相交异面平行异面相交、异面练习提升“a,b是异面直线”是指①a∩b=Φ,且a不平行于b;②a平面,b平面且a∩b=Φ③a平面,b平面④不存在平面,能使a且b成立1、上述结论中,正确的是()(A)①②(B)①③(C)①④(D)③④2、长方体的一条体对角线与长方体的棱所组成的异面直线有()(A)2对(B)3对(C)6对(D)12对CC3、两条直线a,b分别和异面直线c,d都相交,则直线a,b的位置关系是()(A)一定是异面直线(B)一定是相交直线(C)可能是平行直线(D)可能是异面直线,也可能是相交直线4、一条直线和两条异面直线中的一条平行,则它和另一条的位置关系是()(A)平行(B)相交(C)异面(D)相交或异面DD探究:HGCADBEFGHEF(B)(C)DA如图是一个正方体的展开图,如果将它还原为正方体,那么AB,CD,EE,GH这四条线段所在直线是异面直线的有对?答:共有三对abced我们知道,在同一平面内,如果两条直线都和第三条直线平行,那么这两条直线互相平行.在空间这一规律是否还成立呢?观察:将一张纸如图进行折叠,则各折痕及边a,b,c,d,e,…之间有何关系?a∥b∥c∥d∥e∥…公理4:在空间平行于同一条直线的两条直线互相平行.———平行线的传递性二、空间直线的平行关系若a∥b,b∥c,1、平行关系的传递性caabccaα则a∥c。公理4的作用:它是判断空间两条直线平行的依据公理4:在空间平行于同一条直线的两条直线互相平行.推广:在空间平行于一条已知直线的所有直线都互相平行.二.空间直线的平行关系:例2.已知ABCD是四个顶点不在同一个平面内的空间四边形,E,F,G,H分别是AB,BC,CD,DA的中点,连结EF,FG,GH,HE,求证:EFGH是一个平行四边形。证明:连结BD∵EH是△ABD的中位线∴EH∥BD且EH=BD同理,FG∥BD且FG=BD∴EH∥FG且EH=FG∴EFGH是一个平行四边形如果再加上条件AC=BD,那么四边形EFGH是什么图形?ABDEFGHC在平面内,我们可以证明“如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补”.空间中这一结论是否仍然成立呢?定理(等角定理):空间中,如果两个角的两边分别对应平行,那么这两个角相等或互补.观察:如图所示,长方体ABCD-A1B1C1D1中,∠ADC与∠A1D1C1,∠ADC与∠A1B1C1两边分别对应平行,这两组角的大小关系如何?答:从图中可看出,∠ADC=∠A1D1C1,∠ADC+∠A1B1C1=180OD1C1B1A1CABD二.空间直线的平行关系:2.等角定理定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补。问:这两个角什么时候相等,什么时候互补?三.异面直线所成的角在平面内,两条直线相交成四个角,其中不大于90度的角称为它们的夹角,用以刻画两直线的错开程度,如图.在空间,如图所示,正方体ABCD-EFGH中,异面直线AB与HF的错开程度可以怎样来刻画呢?ABGFHEDCO问题提出复习回顾解决问题异面直线所成角的定义:如图,已知两条异面直线a,b,经过空间任一点O作直线a′∥a,b′∥b则把a′与b′所成的锐角(或直角)叫做异面直线所成的角(或夹角).abb′a′O思想方法:平移转化成相交直线所成的角,即化空间图形问题为平面图形问题思考:这个角的大小与O点的位置有关吗?即O点位置不同时,这一角的大小是否改变?异面直线所成的角的范围(0,90]oo如果两条异面直线a,b所成的角为直角,我们就称这两条直线互相垂直,记为a⊥ba″思考:这个角的大小与O点的位置有关吗?即O点位置不同时,这一角的大小是否改变?∵a′∥a,a″∥a∴a′∥a″(公理4),解答:如图设a′与b′相交所成的角为∠1,a″与b所成的角为∠2,同理b′∥b″,∴∠1=∠2(等角定理)b′a′O∠1aa″b∠2答:这个角的大小与O点的位置无关.aαa1b1O1、分别平行于两条异面直线的两条相交直线所成的锐角(直角)叫做两异面直线所成的角2、定义由等角定理解释:为了简便,在求作异面直线所成的角时,O点常选在其中的一条直线上(如线段的端点,线段的中点等)baαOθ如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直。相交垂直(有垂足)垂直异面垂直(无垂足)OααO因此,异面直线所成角的范围是(0,]3、特例:2求异面直线所成的角的步骤是:一作(找):作(或找)平行线二证:证明所作的角为所求的异面直线所成的角。三求:在一恰当的三角形中求出角5、求异面直线所成的角的基本法则:作平行线,构三角形D1C1B1A1CABD(1)如图,观察长方体ABCD-A1B1C1D1,有没有两条棱所在的直线是相互垂直的异面直线?(2)如果两条平行线中的一条与某一条直线垂直,另一条直线是否与这条直线垂直?(3)垂直于同一条直线的两条直线是否平行?如图,已知正方体ABCD-A'B'C'D'中。(1)哪些棱所在直线与直线BA'是异面直线?(2)直线BA'和CC'的夹角是多少?(3)哪些棱所在的直线与直线AA'垂直?解:(1)由异面直线的判定方法可知,与直线BA成异面直线的有直线,,,,,BCADCCDDDCDC,ABCDA'B'C'D'例3如图,已知正方体中。(1)哪些棱所在直线与直线是异面直线?(2)直线和的夹角是多少?(3)哪些棱所在的直线与直线垂直?解:(2)由可知,等于异面直线与的夹角,所以异面直线与的夹角为450。//BBCCBBABACC,,,,,,,ABBCCDDAABBCCDDA(3)直线与直线都垂直.AACCBAABCDA'B'C'D'例3ABCDABCD'BA'BA'CC'AAABGFHEDC课堂练习1如图,正方体ABCD-EFGH中,O为侧面ADHE的中心,求(1)BE与CG所成的角?(2)FO与BD所成的角?解:(1)如图:∵BF∥CG,∴∠EBF(或其补角)为异面直线BE与CG所成的角,又BEF中∠EBF=45,所以BE与CG所成的角是45ooO连接HA、AF,依题意知O为AH中点,∴∠HFO=30o(2)连接FH,所以FO与BD所成的夹角是30o∴四边形BFHD为平行四边形,∴HF∥BD∴∠HFO(或其补角)为异面直线FO与BD所成的角∵HDEA,EAFB∴HDFB∥=∥=∥=则AH=HF=FA∴△AFH为等边△如图,已知长方体ABCD-EFGH中,AB=,AD=,AE=2(1)求BC和EG所成的角是多少度?(2)求AE和BG所成的角是多少度?3232解答:(1)∵GF∥BC∴∠EGF(或其补角)为所求.Rt△EFG中,求得∠EGF=45o(2)∵BF∥AE∴∠FBG(或其补角)为所求,Rt△BFG中,求得∠FBG=60o课堂练习2ABGFHEDC32322不同在任何一个平面内的两条直线叫做异面直线。异面直线的定义:相交直线平行直线异面直线空间两直线的位置关系课堂小结公理4:在空间平行于同一条直线的两条直线互相平行.异面直线的求法:一作(找)二证三求空间中,如果两个角的两边分别对应平行,那么这两个角相等或互补.等角定理:异面直线的画法用平面来衬托异面直线所成的角平移,转化为相交直线所成的角作业:名师一号
本文标题:2.1.2-空间中直线与直线之间的位置关系(2)全解
链接地址:https://www.777doc.com/doc-3265171 .html