您好,欢迎访问三七文档
)(baxdadx)(212xdxdx)(xxeddxe)(sincosxdxdx)cos(sinxdxdx)(ln1xddxx)(21xddxx)(arctan112xddxx)(arcsin112xddxx常用微分公式例2.求xxxxxd)1(122解:xxxxd1d2Cxx||lnarctanxxxxxd)1(122例3.求解:xxdtan2xxd)1(sec2Cxxtanxxdtan2xxxddsec2例4.求其中,d)(xxff(x)=x2+1,x0.1,1xx10,1x解:作函数,待定和原函数内分别有和在),(ln,3],1[]1,0[),0,()(21213CCCxCxxxxfF(x)=0,33xxx1ln2xCx101xCx而要使F(x)成为f(x)在R上的原函数,必须F(x)连续,从而C1=0,C2=1,因此满足条件的函数为F(x)=0,33xxx.11lnxx10,xx故CxFxxf)(d)((4)axdxaaxlnC,(6)cosxdxsinxC,dx2sectgxC,例6(ex3cosx)dxex3sinxC。例9sin22xdxdxx)cos1(21Cxx)sin(21。例9sin22xdxdxx)cos1(21Cxx)sin(21。例10dxxx2cos2sin122dxx2sin144ctgxC。例10dxxx2cos2sin122dxx2sin144ctgxC。例6(ex3cosx)dxex3sinxC。例5.例9sin22xdxdxx)cos1(21Cxx)sin(21。例6.例10dxxx2cos2sin122dxx2sin144ctgxC。例7.(3)x1dxln|x|C,(11)211xdxarctgxC。dxxx)111(2231x3xarctgxC。例12dxxx241dxxx24111dxxxx22211)1)(1(例12dxxx241dxxx24111dxxxx22211)1)(1(dxxx)111(2231x3xarctgxC。例12dxxx241dxxx24111dxxxx22211)1)(1(例8.y)257(xdxxx507C。解:因为总成本是总成本变化率y的原函数,所以已知当x0时,y1000,例9.某厂生产某种产品,每日生产的产品的总成本y的变化率是日产量x的函数yx257,已知固定成本为1000元,求总成本与日产量的函数关系。因此有C=1000,作业:P137:5(2)(5)(10)(15).于是总成本y与日产量x的函数为yxx5071000。例2.xxexd12求解:观察12xxe中间变量u=x2+1但u=x2+1的导数为u=2x在被积函数中添加2个因子12221xex'uu因此Cexxexx112221d例3.xxxd543求解:xxxd534Cu12112114154xuudu4121Cx234)5(61uuduxxxd454134xxxfd)('))((uufd)(u=(x)xudd例4.)0(d22axax求解:能想出原函数的形式吗?Cxxxarcsin1d2记得这个公式吗?如何用这个公式?22)(1d)(1daxaxaxaxCaxarcsin例5.求解:xxxxd22cos1dsin2xxxd2cos21d21)2(d2cos4121xxxCxx2sin41212sind.xx例6解:22dxax求xxaxaad)11(2122dxaxxaxaxaxaa)(d)(d21Cxaxaa||ln||ln21Cxaxaaln21例7求.dxx231解,)(xxx2323121231dxx231dxxx)(2323121duu121Culn21.)ln(Cx2321xu23例8求.)ln51(1dxxx解dxxx)ln51(1)(lnln511xdx)ln51(ln51151xdxxuln21duu151Culn51熟练以后就不需要进行)(xu转化了Cx)ln51ln(51例9求.)(dxxx21解dxxx21)()(])()([xdxx11111221111CxCx)()ln(dxxx2111)(Cxx)()ln(111例11求解dxx3sinCxxxdxxdxxdxx)cos(coscos)cos(sinsinsin3223311正弦余弦三角函数积分偶次幂降幂,齐次幂拆开放在微分号dxex11dxeedxeexxxx1)1(1xxxxdeexdee11)(1)1(11xxede.)1ln(Cex解例12求.11dxex例13求xdxx35sectanxdxx35sectan解xdxxxxtansecsectan24xxdxsecsec)(sec2221xdxxxsec)secsec(sec2462Cxxx357315271secsecsec例14求解.cos11dxxdxxcos11dxxx2cos1cos1dxxx2sincos1)(sinsin1sin122xdxdxx.sin1cotCxx例15求解.cossin52xdxxxdxx52cossin)(sin)sin1(sin222xdxx)(sin)sinsin2(sin642xdxxx.sin71sin52sin31753Cxxx说明当被积函数是三角函数相乘时,拆开奇次项去凑微分.)(sincossinxxdx42例16求解.2cos3cosxdxx),5cos(cos212cos3cosxxxxdxxxxdxx)5cos(cos212cos3cos.5sin101sin21Cxx利用积化和差公式,得解dxxsin1xdxcsc)(coscos112xdxduu211duuu111121Cuu11ln21.cos1cos1ln21Cxx类似地可推出例17求.cscxdxdxxx2sinsin.)tanln(secsecCxxxdx.)cotln(cscCxxxxd12原式xxd1)1(2Cx14[解]xxdx1例18dxxxx4cos4cossin2原式222)(cos4)(cosxxdCx)2cosarcsin(2[解]dxxx4cos42sin]19[例)ln1(ln112lnln1xdxx原式)ln1()ln1(21xdx[解])ln1()ln1()12(ln21xdxCxx2123)ln1)(12(ln2)ln1(32dxxxxln12ln]21[例dxxexeexxxx)1()1(原式)()1()1(xxxxxxedxexexexe)1()(xxxxexexedCxexexx1ln[解]dxxexxx)1()1(]22[例例1解.)0(d22aaxx计算.),(),(1)(22aaaxxf的连续区间为时),()1(axdtansecd20sec,故,则,令tttaxttaxtatttaaxxtandtansecd22ttdsec1|tansec|lnCtt)ln(.||ln122aCCCaxx=xat22ax时),()2(axdtansecd2sec,故,则,令tttaxttaxtatttaaxxtandtansecd22ttdsec1|tansec|lnCtt||ln222Caxx0x2222222))((lnCaxxaxxaxx)ln(.||ln122aCCCaxx),(),(均有或综上所述,不论axax).0(,||lnd2222aCaxxaxx。而只是作“形式”计算,,一般不再分区间讨论今后在计算不定积分时例2求解).0(22adxxatdtadxcostdtatadxxacoscos2222,sinttaxtataaxacossin22222dttatdta22cos1cos222Cttatacossin2222Cxaxaxaaxt222212arcsinarcsint22xaxa例3求解).0(122adxax令taxtantdtadx2secdxax221tdtata2secsec1tdtsecCtt)tanln(sectax22ax2222221lnln()lnln().xxaCxxaaCaaxxaC2,2t注三角代换的目的是化掉根式.例4解.)0()(d322axax计算,dcosd,22,sin故则令ttaxttaxttaxax22322cosd1)(dCtatan12.222Cxaaxxat22xa例1求解.dxex11xet令,dttdx1dttt)(122dttt1112Ctt)]ln([ln12,lntx2考虑到被积函数中的根号是困难所在,故dxex11回代将xet.lnCeexx12原式例2解.d3xxx计算.6,,31321为分母的最小公倍数的指数部分的它们xxxx,0,61txt令,d6d,56故则ttxtxtttxxxd16d33tttd11163ttttd)111(62Ctttt|1|ln663223.)1ln(6632663Cxxxx例3解.1d25xxx计算dd11222,故,,则令ttxxtxxtttxxxd)1(1d2225tttd)12(24Cttt353251.1)1(32)1(5123252Cxxx例4解.d111xxxx计算121)1(d4d11222,故,,则令txtttxxxt)1)(1(d4d1121222ttttxxxtttttd)1)(1()1()1(222221d21d222ttttCtttarctan2|1||1|lnCxxxxxx11arctan2|11||11|ln例5解.522d2xxx计算4)1(2d522d22xxxxx,dsec2d,tan212故则令ttxtxtttxxxsec1dsec522d22tttcos)cos1(dttttcos1dcosdttttd2sec21ds
本文标题:不定积分典型例题
链接地址:https://www.777doc.com/doc-3268173 .html