您好,欢迎访问三七文档
CentrumvoorWiskundeenInformaticaPNAProbability,NetworksandAlgorithmsProbability,NetworksandAlgorithmsTheCandymodelrevisited:MarkovpropertiesandinferenceM.N.M.vanLieshout,R.S.StoicaREPORTPNA-R0115AUGUST2001CWIistheNationalResearchInstituteforMathematicsandComputerScience.ItissponsoredbytheNetherlandsOrganizationforScientificResearch(NWO).CWIisafoundingmemberofERCIM,theEuropeanResearchConsortiumforInformaticsandMathematics.CWI'sresearchhasatheme-orientedstructureandisgroupedintofourclusters.Listedbelowarethenamesoftheclustersandinparenthesestheiracronyms.Probability,NetworksandAlgorithms(PNA)SoftwareEngineering(SEN)Modelling,AnalysisandSimulation(MAS)InformationSystems(INS)Copyright©2001,StichtingCentrumvoorWiskundeenInformaticaP.O.Box94079,1090GBAmsterdam(NL)Kruislaan413,1098SJAmsterdam(NL)Telephone+31205929333Telefax+31205924199ISSN1386-3711TheCandyModelRevisited:MarkovPropertiesandInferenceM.N.M.vanLieshoutandR.S.StoicaCWIP.O.Box94079,1090GBAmsterdam,TheNetherlandsABSTRACTThispaperstudiestheCandymodel,amarkedpointprocessintroducedbyStoicaetal.(2000).WeproveRuelleandlocalstability,investigateitsMarkovproperties,anddiscusshowthemodelmaybesampled.Finally,weconsiderestimationofthemodelparametersandpresentsomeexamples.2000MathematicsSubjectClassi cation:60G55,62M40.KeywordsandPhrases:Candymodel,MarkovchainMonteCarlosimulation,Markovmarkedpointprocess,maximumlikelihoodestimation,stability.Note:WorkcarriedoutunderprojectPNA4.3‘StochasticGeometry’.ThisresearchwassupportedbyNWOgrant‘Inferenceforrandomsets’(613-03-045).1.Set-upandnotationIn[36,37],Stoica,DescombesandZerubiaintroducedamarkedpointprocessmodelforlinesegments{dubbedCandy{aspriordistributionfortheimageanalysisproblemofextractinglinearnetworkssuchasroadsorriversfromimages(usuallyobtainedbyaerialphotographyorsatellites).Inthispaperweinvestigatetheanalyticalpropertiesofthemodel,focusingontheRuellecondition,localstabilityandtheinteractionstructure.Wealsostudystatisticalaspects,includingsimulationbyMarkovchainMonteCarloandparameterestimation.WeshallrepresentalinesegmentasapointinsomecompactsubsetK R2ofstrictlypositivevolume0 (K)1withanattachedmarktakingvaluesintheCartesianproduct[lmin;lmax] [0; )forsome0lminlmax1.Eachmarkedpoint(k;l; )canbeinterpretedasalinesegmentwithmidpointk,lengthl,andorientation .Ifrequired,anextramarkforthewidthofthesegmentmaybeadded.Notethatintheoriginalformulation[36,37],themarkspacefororientationsis[0;2 ].Acon gurationoflinesegmentsisa nitesetofmarkedpoints.Thus,forn2N0,writeSnforthesetofall(unordered)con gurationss=fs1;:::;sngthatconsistofn,notnecessarilydistinct,markedpointssi2S=K [lmin;lmax] [0; ).Hence,thecon gurationspacecanbewrittenas =[1n=0Sn,whichmaybeequippedwiththe -algebraFgeneratedbythemappingsfs1;:::;sng7!Pni=11fsi2AgthatcountthenumberofmarkedpointsinBorelsetsA S=K [lmin;lmax] [0; ).Ifthemarksarediscarded,thecon gurationspaceofmidpointsis K=[1n=0Kn,whereKnisthesetofallcon gurationsx=fk1;:::;kngthatconsistofn,notnecessarilydistinct,pointski2K;theassociated -algebraFKisgeneratedbythemappingscountingthenumberofpointsfallinginBorelsubsetsofK.ApointprocessonKisameasurablemappingfromsomeprobabilityspaceinto( K;FK);amarkedpointprocesswithpointsinKandmarksin[lmin;lmax] [0; )isapointprocessontheproductspaceK [lmin;lmax] [0; )withtheadditionalpropertythatthemarginalprocessofsegmentcentersisapointprocessonK.Forfurtherdetails,see[4].2PerhapsthesimplestmarkedpointprocessmodelisthePoissonprocessde nedbytheprobabilitymeasure (F)=1Xn=0e (K)n!f (lmax lmin)g nZS ZS1F(f(k1;l1; 1); ;(kn;ln; n)gd (k1) d (kn)dl1 dlnd 1 d non( ;F).Inotherwords,under ,midpointsareplacedinKaccordingtoaPoissonprocesswithintensitymeasure ,towhichpointsindependent,uniformlydistributedmarksareassignedtodeterminethelengthandorientation.Exhibitingnointeractions,theabovePoissonmarkedpointprocessistheidealreferenceprocess.Indeed,onemayde nemorecomplicatedmodelsbyspecifyingaRadon{Nikodymderivativepwithrespectto .FortheCandymodel,ats=fs1;:::;sngwithsi=(ki;li; i)2K [lmin;lmax] [0; ),i=1;:::;n,p(s)= n(s)(nYi=1exp li lmaxlmax ) nf(s)1 ns(s)2 nr(s)3 no(s)4(1.1)where 1; 2; 3; 42(0;1)and 0arethemodelparameters.Stoicaetal.recommend 1 2.Thesu cientstatisticsn(s),nf(s),ns(s),nr(s),no(s)representrespectivelythetotalnumberofsegments,thenumberof‘free’ones,thenumberofsegmentswithasingleoneofitsendpointsnearanothersegmentendpoint,thenumberofpairsofsegmentscrossingattoosharpangles,andthenumberofpairsthataredisoriented.Amoreprecisede nitionwillbegiveninsection2below.Intuitivelyspeaking,therearepenaltiesattachedtoeachfreeandsinglyconnectedsegment,aswellastoeachsharpcrossingandtoeverydisagreementinorientation.Theplanofthispaperisasfollows.Insection2,arigorousde nitionoftheCandymodelisgiven.WeestablishtheRuelleconditionandlocalstability.Furthermore,wede neseveralrelationsonthecon gurationspace,andinvestigatetheMarkovbehavioroftheCandymodel.Insection3,aMetropolis{HastingsalgorithmbasedonbirthsanddeathsissuggestedforsamplingfromtheCandymodel.Wediscusstheconvergenceofthealg
本文标题:The Candy model revisited Markov properties and in
链接地址:https://www.777doc.com/doc-3291447 .html