您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 【名师整理归类】2016年高考数学(理)一轮复习精品:K单元++概率
1数学K单元概率K1随机事件的概率20.K1、K5、K6、K8、K9[2014·湖北卷]计划在某水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水年入流量....X(年入流量:一年内上游来水与库区降水之和,单位:亿立方米)都在40以上,其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年,将年入流量在以上三段的频率作为相应段的概率,并假设各年的年入流量相互独立.(1)求未来4年中,至多..有1年的年入流量超过120的概率.(2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量X限制,并有如下关系:年入流量X40X8080≤X≤120X120发电机最多可运行台数123若某台发电机运行,则该台年利润为5000万元;若某台发电机未运行,则该台年亏损800万元,欲使水电站年总利润的均值达到最大,应安装发电机多少台?20.解:(1)依题意,p1=P(40X80)=1050=0.2,p2=P(80≤X≤120)=3550=0.7,p3=P(X120)=550=0.1.由二项分布得,在未来4年中至多有1年的年入流量超过120的概率为p=C04(1-p3)4+C14(1-p3)3p3=0.94+4×0.93×0.1=0.9477.(2)记水电站年总利润为Y(单位:万元).①安装1台发电机的情形.由于水库年入流量总大于40,故一台发电机运行的概率为1,对应的年利润Y=5000,E(Y)=5000×1=5000.②安装2台发电机的情形.依题意,当40X80时,一台发电机运行,此时Y=5000-800=4200,因此P(Y=4200)=P(40X80)=p1=0.2;当X≥80时,两台发电机运行,此时Y=5000×2=10000,因此P(Y=10000)=P(X≥80)=p2+p3=0.8.由此得Y的分布列如下:Y420010000P0.20.8所以,E(Y)=4200×0.2+10000×0.8=8840.③安装3台发电机的情形.依题意,当40X80时,一台发电机运行,此时Y=5000-1600=3400,因此P(Y=3400)=P(40X80)=p1=0.2;当80≤X≤120时,两台发电机运行,此时Y=5000×2-800=9200,因此P(Y=9200)=P(80≤X≤120)=p2=0.7;当X120时,三台发电机运行,此时Y=5000×3=15000,因此P(Y=15000)=P(X120)=p3=0.1.由此得Y的分布列如下:Y3400920015000P0.20.70.12所以,E(Y)=3400×0.2+9200×0.7+15000×0.1=8620.综上,欲使水电站年总利润的均值达到最大,应安装发电机2台.17.K1,K5,K6,K8[2014·四川卷]一款击鼓小游戏的规则如下:每盘游戏都需击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得-200分).设每次击鼓出现音乐的概率为12,且各次击鼓出现音乐相互独立.(1)设每盘游戏获得的分数为X,求X的分布列.(2)玩三盘游戏,至少有一盘出现音乐的概率是多少?(3)玩过这款游戏的许多人都发现,若干盘游戏后,与最初的分数相比,分数没有增加反而减少了.请运用概率统计的相关知识分析分数减少的原因.21教育网17.解:(1)X可能的取值为10,20,100,-200.根据题意,有P(X=10)=C13×121×1-122=38,P(X=20)=C23×122×1-121=38,P(X=100)=C33×123×1-120=18,P(X=-200)=C03×120×1-123=18.所以X的分布列为:X1020100-200P38381818(2)设“第i盘游戏没有出现音乐”为事件Ai(i=1,2,3),则P(A1)=P(A2)=P(A3)=P(X=-200)=18.所以“三盘游戏中至少有一盘出现音乐”的概率为1-P(A1A2A3)=1-183=1-1512=511512.因此,玩三盘游戏至少有一盘出现音乐的概率是511512.(3)由(1)知,X的数学期望为EX=10×38+20×38+100×18-200×18=-54.这表明,获得分数X的均值为负.因此,多次游戏之后分数减少的可能性更大.K2古典概型11.J2、K2[2014·广东卷]从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是6的概率为________.11.16[解析]本题主要考查古典概型概率的计算,注意中位数的求法.从0,1,2,3,34,5,6,7,8,9中任取七个不同的数,有C710种方法,若七个数的中位数是6,则只需从0,1,2,3,4,5中选三个,从7,8,9中选三个不同的数即可,有C36C33种方法.故这七个数的中位数是6的概率P=C36C33C710=16.18.K2、K6、K8[2014·福建卷]为回馈顾客,某商场拟通过摸球兑奖的方式对1000位顾客进行奖励,规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获的奖励额.(1)若袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元,求:(i)顾客所获的奖励额为60元的概率;(ii)顾客所获的奖励额的分布列及数学期望.(2)商场对奖励总额的预算是60000元,并规定袋中的4个球只能由标有面值10元和50元的两种球组成,或标有面值20元和40元的两种球组成.为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡,请对袋中的4个球的面值给出一个合适的设计,并说明理由.18.解:(1)设顾客所获的奖励额为X.(i)依题意,得P(X=60)=C11C13C24=12.即顾客所获的奖励额为60元的概率为12,(ii)依题意,得X的所有可能取值为20,60.P(X=60)=12,P(X=20)=C23C24=12,即X的分布列为X2060P0.50.5所以顾客所获的奖励额的期望为E(X)=20×0.5+60×0.5=40(元).(2)根据商场的预算,每个顾客的平均奖励额为60元.所以,先寻找期望为60元的可能方案.对于面值由10元和50元组成的情况,如果选择(10,10,10,50)的方案,因为60元是面值之和的最大值,所以期望不可能为60元;如果选择(50,50,50,10)的方案,因为60元是面值之和的最小值,所以期望也不可能为60元,因此可能的方案是(10,10,50,50),记为方案1.对于面值由20元和40元组成的情况,同理可排除(20,20,20,40)和(40,40,40,20)的方案,所以可能的方案是(20,20,40,40),记为方案2.以下是对两个方案的分析:对于方案1,即方案(10,10,50,50),设顾客所获的奖励额为X1,则X1的分布列为X12060100P162316X1的期望为E(X1)=20×16+60×23+100×16=60,4X1的方差为D(X1)=(20-60)2×16+(60-60)2×23+(100-60)2×16=16003.对于方案2,即方案(20,20,40,40),设顾客所获的奖励额为X2,则X2的分布列为X2406080P162316X2的期望为E(X2)=40×16+60×23+80×16=60,X2的方差为D(X2)=(40-60)2×16+(60-60)2×23+(80-60)2×16=4003.由于两种方案的奖励额的期望都符合要求,但方案2奖励额的方差比方案1的小,所以应该选择方案2.5.K2[2014·新课标全国卷Ⅰ]4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为()21教育名师原创作品A.18B.38C.58D.785.D[解析]每位同学有2种选法,基本事件的总数为24=16,其中周六、周日中有一天无人参加的基本事件有2个,故周六、周日都有同学参加公益活动的概率为1-216=78.6.K2[2014·陕西卷]从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于...该正方形边长的概率为()A.15B.25C.35D.456.C[解析]利用古典概型的特点可知从5个点中选取2个点的全部情况有C25=10(种),选取的2个点的距离不小于该正方形边长的情况有:选取的2个点的连线为正方形的4条边长和2条对角线长,共有6种.故所求概率P=610=35.16.K2、K4、K6[2014·天津卷]某大学志愿者协会有6名男同学,4名女同学.在这10名同学中,3名同学来自数学学院,其余7名同学来自物理、化学等其他互不相同的七个学院.现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同).(1)求选出的3名同学是来自互不相同学院的概率;(2)设X为选出的3名同学中女同学的人数,求随机变量X的分布列和数学期望.16.解:(1)设“选出的3名同学是来自互不相同的学院”为事件A,则P(A)=C13·C27+C03·C37C310=4960,所以选出的3名同学是来自互不相同学院的概率为4960.(2)随机变量X的所有可能值为0,1,2,3.P(X=k)=Ck4·C3-k6C310(k=0,1,2,3),5所以随机变量X的分布列是X0123P1612310130随机变量X的数学期望E(X)=0×16+1×12+2×310+3×130=65.9.K2、K8[2014·浙江卷]已知甲盒中仅有1个球且为红球,乙盒中有m个红球和n个蓝球(m≥3,n≥3),从乙盒中随机抽取i(i=1,2)个球放入甲盒中.(a)放入i个球后,甲盒中含有红球的个数记为ξi(i=1,2);(b)放入i个球后,从甲盒中取1个球是红球的概率记为pi(i=1,2).则()A.p1p2,E(ξ1)E(ξ2)B.p1p2,E(ξ1)E(ξ2)C.p1p2,E(ξ1)E(ξ2)D.p1p2,E(ξ1)E(ξ2)9.A[解析]方法一:不妨取m=n=3,此时,p1=36×22+36×12=34,p2=C23C26×33+C13C13C26×23+C23C26×13=23,则p1p2;E(ξ1)=1×36+2×36=32,E(ξ2)=1×C23C26+2×C13C13C26+3×C23C26=2,则E(ξ1)E(ξ2).故选A.方法二:p1=mm+n×22+nm+n×12=2m+n2(m+n),p2=C2mC2m+n×33+C1mC1mC2m+n×23+C2nC2m+n×13=3m2-3m+4mn+n2-n3(m+n)(m+n-1),则p1-p2=mn+n(n-1)6(m+n)(m+n-1)0;E(ξ1)=1×nm+n+2×mm+n=2m+nm+n,E(ξ2)=1×C2nC2m+n+2×C1mC1nC2m+n+3×C2mC2m+n=3m2-3m+4mn+n2-n(m+n)(m+n-1),E(ξ1)-E(ξ2)=-m2+m-mn(m+n)(m+n-1)0,故选A.18.K2,K6[2014·重庆卷]一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3.从盒中任取3张卡片.(1)求所取3张卡片上的数字完全相同的概率;(2)X表示所取3张卡片上的数字的中位数,求X的分布列与数学期望.(注:若三个数a,b,c满足a≤b≤c,则称b为这三个数的中位数)18.解:(1)由古典概型中的概率计算公式知所求概率为P=C34+C33C39=584.(2)X的所有可能值为1,2,3,且P(X=1)=C24C15+C34C39=1742,P(X=2)=C13C14C12+C23C16+C33C39=4384,6P(
本文标题:【名师整理归类】2016年高考数学(理)一轮复习精品:K单元++概率
链接地址:https://www.777doc.com/doc-3303012 .html