您好,欢迎访问三七文档
ACOMMONTRENDSMODEL:IDENTIFICATION,ESTIMATIONANDINFERENCEANDERSWARNEAbstract.Commontrendsmodelsprovideausefultoolforstudyinggrowthandbusi-nesscyclephenomenainajointframework(seeKing,Plosser,StockandWatson(1991)).Inthispaperwestudytheproblemofhowtoestimateandanalyseacommonstochastictrendsmodelforanndimensionaltimeserieswhichiscointegratedoforder(1,1)withrncointegrationvectors.Identi cationofk=n rpermanent(trend)andrtransi-toryinnovationsisdiscussedintermsofimpulseresponsesandvariancedecompositions.Finally,wederiveanalyticalexpressionsoftheasymptoticdistributionsforestimatesofthesefunctions,therebymakingformalhypothesistestingandinferencepossiblewithinthisframework.Keywords:Cointegration,commontrends,impulseresponsefunction,permanentandtransitoryshocks,variancedecomposition.JELClassificationNumbers:C32,C51.1.IntroductionInmanymodelsonmacroeconomic uctuationsthedichotomybetweengrowthandcycleshasplayedanimportantrole.Traditionally,growthhasoftenbeentreatedasindependentoffactorsthatresultincyclical uctuations(seeKing,PlosserandRe-belo(1988a)).Incontrast,stochasticgrowthmodels(seee.g.King,PlosserandRebelo(1988b),andKing,Plosser,StockandWatson(1987))allowgrowthshockstoin uencetheshortrun uctuations.Acommonfeatureofthesemodelsisthatthenumberofgrowthdisturbancesisratherlowrelativetothenumberofvariables.Theprevailingviewinthetheoreticalliteratureseemstobethatmacroeconomic uc-tuationsarisefromshockstofundamentalvariablessuchaseconomicpolicy,preferences,andtechnology.Theseshocksarethenpropagatedthroughtheeconomyandresultinsystematicpatternsofpersistenceandcomovementsamongmacroeconomicaggregates.Consequently,itshouldbeofinteresttoanalyseasimpletimeseriesmodelwhichmakesDate:October1993.Ihavebene ttedfromdiscussionswithMichaelBergman,NilsGottfries,NielsHaldrup,DennisHo man,SvendHylleberg,TorJacobson,S renJohansen,KatarinaJuselius,SuneKarlsson,ErikMellander,Lars{Erik Oller,andAndersVredin.ThispaperisbasedonachapterofmyPhDthesis.Responsibilityforerrorsandobscuritiesrestswithmealone.FinancialsupportfromBankforskningsinstitutetandHumanistisk{Samh allsvetenskapligaForskningsr adetisgratefullyacknowledged.12ANDERSWARNEitpossibletoexamineconnectionsbetweengrowthrelatedshocksandtransient uctua-tions.Suchamodelwillthenbynecessityincorporatestochasticratherthandeterminis-tictrends.Furthermore,toconsiderthenotionofafewimportantgrowthdisturbances,therewillingeneralbefewerstochastictrendsthantimeseries.InpapersbyKing,Plosser,Stock,andWatson(1987,1991)andStockandWatson(1988)theconnectionbetweencointegrationandcommonstochastictrendswas rstex-aminedinsomedetail.Thebasicideaisthatthereisareducednumberoflinearstochastictrendsfeedingthesystem.Thisimpliesthatthereexistscertainlinearcombinationsofthelevelsserieswhichensurethatthetrendsaverageout,i.e.theresidualsfromthelinearcombinationsarewidesensestationarystochasticprocesses.King,Plosser,Stock,andWatson(1987)investigateacommontrendsmodelfor veU.S.macroeconomictimeseries(output,consumption,investments,thepricelevel,andthemoneystock)andmodelgrowthbytwostochastictrends,anominalandarealtrend.With vetimese-riesandtwoindependentstochastictrends,commonsense(oralgebra)suggeststhatwecanconstructthreeindependentvectorswhicheliminatethetrends,i.e.therearethreecointegratingvectorswhichdescribeasteadystateinsuchasystem.Ashortcomingoftheirpaperisthatthedescriptionoftheestimationandcomputationstrategytheymakeuseofissomewhatlimited.Forexample,aninversionalgorithmneededtoobtainestimatesof,e.g.impulseresponsefunctionsandforecasterrorvariancedecompositionsisonlymentioned.Moreimportantly,asymptoticpropertiesofthesefunctionsarenotconsidered.Apurposeofthispaperistomathematicallyestablishhowonemayestimatetheparametersinacommonstochastictrendsmodelwhenthetimeseriesofinterestarecointegratedoforder(1,1)(seeBlanchardandQuah(1989),Park(1990),andShapiroandWatson(1988)forapproacheswhicharerelatedtotheoneIshallexaminehere;orGonzaloandGranger(1992)forafactormodelapproachtocommontrends).Fur-thermore,Ishallshowhowonemayperformdynamicanalysiswithinthisframeworkwhentheinnovationstothesystemareeitherpermanentortransitory,i.e.whenthere-sponsesinatleastonevariabletoaninnovationareorarenotpersistent.Inparticular,thecalculationofimpulseresponsefunctionsandforecasterrorvariancedecompositionswillbelookedintoinsomedetail.Finally,Ishallderiveasymptoticdistributionsofestimatesofthesefunctionsinthepresentsetting.Here,thetheoryisbasedonBaillieACOMMONTRENDSMODEL3(1981,1987),L utkepohl(1988,1989,1990),L utkepohlandPoskitt(1990),L utkepohlandReimers(1992),andSchmidt(1973,1974),althoughtheparticularinnovationsIexaminecomplicatetheanalysissomewhat.Thepaperisorganizedasfollows.Insection2,Idiscusssomerepresentationswhichareequivalentforcointegratedtimeseries.Thereitisshownthatarestrictedvectorautoregressiverepresentationforcointegratedtimeseriesexistsunderfamiliarcircum-stances.Sincethisrepresentationisinvertible,itiswellsuitedforcalculatingallotherparametersofinterest(seealsoWarne(1990)).Section3isconcernedwiththeWoldmovingaverageparametersand
本文标题:A common trends model identification, estimation a
链接地址:https://www.777doc.com/doc-3306864 .html