您好,欢迎访问三七文档
DCO-Dy0.6Sr0.4Co0.2Fe0.8复合阴极的制备和表征DepartmentofMaterialsScience&EngineeringUSTC本科毕业论文答辩2003-6答辩人:刘铭飞导师:刘杏芹教授专业:材料化学DepartmentofMaterialsScience&EngineeringUSTCSOFC(综述)DCO-DSCF粉体的制备和表征电学性能的研究阳极支撑体与SDC共压成型研究致谢内容提要DepartmentofMaterialsScience&EngineeringUSTCSOFC工作原理O2-O2-Oxydant(air)/O2Fuel(CH4,H2,CO)+-O2+4e2O2-2H2-4e+2O2-2H2OCH4-8e+4O2-2H2O+CO2CO-2e+O2-CO2e-IExternalloadPorouscathodecollectorcollectorSolidelectrolytePorousanodeO2-O2-PO2IIPO2IDepartmentofMaterialsScience&EngineeringUSTCSOFC的优点SOFC优点污染小效率高燃料适应性强全固态组件,避免电解质维护产物:CO2、H2O燃料燃烧能直接转化成电能H2、CO、天然气等DepartmentofMaterialsScience&EngineeringUSTCSOFC对阴极的要求化学及微结构稳定;有高的电子电导和足够的离子电导;催化活性高;有足够的孔隙率,以利于气体的输运;与电解质材料化学相容,热匹配;阴极/电解质界面结合良好。DepartmentofMaterialsScience&EngineeringUSTC研究背景传统SOFC(900~1000℃)面临挑战成本高界面扩散严重材料间热匹配困难密封困难材料老化快产业化?发展趋势:降低SOFC操作温度:500~800CIT-SOFCs固体氧化物燃料电池(SOFC)作为一种高效、清洁的能源装置,正受到广泛重视。DepartmentofMaterialsScience&EngineeringUSTC选题背景中温下,阴极极化损失是影响电池性能的主要因素;LSM中温下催化活性太低,不能使用。提高电极的催化活性,降低极化损失。中温化途径降低电解质层的电阻寻找新材料•钙钛矿型LSCF类阴极材料•DCO复合阴极材料寻找高电导率的电解质材料电解质薄膜化DCO-DSCFDepartmentofMaterialsScience&EngineeringUSTCDy(NO3)3Fe(NO3)3Sr(NO3)2Co(NO3)3混合溶液电炉加热溶液变稠自然6:4:2:8初级粉体850℃处理3h然后球磨,得到DSCF粉体加入一定量的甘氨酸GNP法制备粉体流程改进固相反应制备氧化铈掺杂的粉体通过GNP法制得的DSCF硝酸铈湿法球磨24h850℃处理3hDCO-DSCF粉体粉体制备流程图DepartmentofMaterialsScience&EngineeringUSTCa.0%CeO2;b.1%CeO2;c.2%CeO2;d.5%CeO2;e.10%CeO2;f.20%CeO2;g.CSCF晶体结构(XRD)203040506070gfedcb2aDSCFDSCF:六方结构nma5461.0nmc329.1203040506070850oC1150oC1200oC1300oC2DepartmentofMaterialsScience&EngineeringUSTCXRDCeO2DSCF中高温范围内DCO-DSCF复合相结构稳定。样品:7.6wt%DCO-DSCF温度(℃)800115012001300时间(min)180180180120粒径(nm)21.037.941.642.2cosD谢乐公式:温度升高,晶粒长大。DepartmentofMaterialsScience&EngineeringUSTC烧结温度表观密度相对密度孔隙率*11504.39965.334.712005.37479.820.8*12806.03295.05.0013006.47596.13.90烧结性能1150C烧结:多孔材料1280C烧结:致密材料理论密度:3738.6cmg样品:7.6wt%DCO-DSCF为电学性能测试确定样品烧结温度——利用阿基米德排水法原理DepartmentofMaterialsScience&EngineeringUSTC电导率测量0.901.051.201.351.501.651.800481216202428900750600450300gfedcba1000/T(k-1)(s)oCDSCF、DCO-DSCF电导率随着温度的升高而升高,当其达到一个最高点以后又会下降,呈现半导体-金属导电类型转变,结果与文献报道一致。CeO2掺杂的DSCF电极的电导率下降。a.0%CeO2;b.1%CeO2;c.2%CeO2;d.5%CeO2;e.10%CeO2;f.20%CeO2;g.CSCF——利用四端子法测量LSVI1.01.21.41.61.85678910900750600450300bfdgeca1000/T(K-1)Ln(/Scm-1K)oCDepartmentofMaterialsScience&EngineeringUSTC电导率测量a.0%CeO2;b.1%CeO2;c.2%CeO2;d.5%CeO2;e.10%CeO2;f.20%CeO2;g.CSCF低温段,体系的电荷补偿主要是通过B位Co离子的变价来实现,其电导以空穴为主,电导率随温度的变化符合小极化子导电机理。满足Arrhenius关系:σ=(c/T)exp(-Ea/kT)高温段,体系的电荷补偿逐渐变成以氧空位补偿为主,导致载流子B的浓度变小,体系电导率下降。][2][]['OCoDyVCoSr根据Arrhenius公式:)exp(0RTEaT)ln()ln(0RTEaT22122OCoVOCoCoOOCoEa=36kJ/molEa=18kJ/molDepartmentofMaterialsScience&EngineeringUSTC阻抗谱测量4*2*221212RRSRRASR界面电阻及表观活化能:RTEaAALnASRLn)()('3456701Z'cm2Z''cm2700℃20%CeO2-DSCF通过测量样品在不同温度下界面电阻,计算表观活化能'RkEa制备样品SDC阴极涂层阴极涂层测试结果R2R1DepartmentofMaterialsScience&EngineeringUSTC阻抗谱分析1015202530354005105500CZ'cm2Z''cm268101214161820024Z''cm2Z'cm26000C34567891011120126500CZ''cm2Z'cm234567017000CZ'cm2Z''cm22.02.53.03.54.04.50.00.5Z''cm2Z'cm27500C1.61.82.02.22.42.62.80.00.20.4Z''cm2Z'cm28000C样品:20wt%DCO-DSCFDepartmentofMaterialsScience&EngineeringUSTC不同样品的Arrhenius曲线0.900.951.001.051.101.151.201.25-1.0-0.50.00.51.01.52.02.53.0LnASR(cm2)DSCFEa=1.24ev1000/TK-10.951.001.051.101.151.201.250.00.51.01.52.02.5LnASR(cm2)Ea=1.01evDSCF-1%CeO21000/TK-10.900.951.001.051.101.151.201.250.00.51.01.52.02.53.0LnASR(cm2)Ea=0.96evDSCF-2%CeO21000/TK-10.900.951.001.051.101.151.201.250.00.51.01.52.02.53.0LnASR(cm2)Ea=0.94evDSCF-5%CeO21000/TK-10.951.001.051.101.151.201.250.51.01.52.02.53.0LnASR(cm2)Ea=0.87ev1000/TK-1DSCF-10%CeO20.900.951.001.051.101.151.201.250.00.51.01.52.02.53.0LnASR(cm2)Ea=1.02evDSCF-20%CeO21000/TK-10.850.900.951.001.051.101.151.201.25-0.50.00.51.01.52.02.53.0Ea=1.04evLnASR(cm2)CSCF1000/TK-1DepartmentofMaterialsScience&EngineeringUSTC阻抗谱分析结果051015200.80.91.01.11.21.3Ea(ev)CeO2的百分含量(wt%)加入CeO2后的DCO-DSCF阴极材料的界面活化能都降低,催化活性提高。DepartmentofMaterialsScience&EngineeringUSTC阳极支撑体与电解质匹配Ni(OH)2(CO3)2750℃分解400℃分解40wt%60wt%调整比例共压,1400℃/5h烧结。研究阳极支撑体与电解质热匹配性,制备同步收缩的样品。球磨24h,烘干,制得阳极支撑粉体0.7gGNP法制备Sm0.2Ce0.8O1.9共沉淀法制备Sm0.2Ce0.8O1.90.1g0.017gNi-SDCSDC加压SDC/NiO-SDCDepartmentofMaterialsScience&EngineeringUSTCXRD203040506070SDC▼▼▼▼-NiOSDC-NiO(222)(400)(311)(220)(200)(111)共沉淀法2GNP法DepartmentofMaterialsScience&EngineeringUSTC共烧匹配性观察共烧形状SDC共沉淀法GNP法NiO750℃60wt%64wt%62wt%400℃40wt%36wt%38wt%结论阳极收缩太大电解质收缩过大比较好都比较好阳极支撑体中SDC的含量均为总含量的40wt%,NiO占60wt%DepartmentofMaterialsScience&EngineeringUSTC论文总结用甘氨酸-硝酸盐法(GNP)成功的合成了钙钛矿结构的DSCF、CSCF的超细粉体,同时用改进的固相反应法制备了不同含量氧化铈掺杂的DCO-DSCF。用GNP制得的粉体在850℃热处理可以除去体系中的残留有机物,并使其成相,比固相反应温度有大幅度下降,且简单易操作。DSCF和DCO-DSCF材料的电导率随着温度的升高先升高后下降,呈现半导体-金属型导电机制,在低温段满足小极化子导电机制;CeO2掺杂使DSCF电极的电导率下降,但由于CeO2材料是良好的O2-导体,通过CeO2掺杂后能大大降低阴极与电解质的界面活化能,提高阴极的催化活性;复合阳极(NiO-SDC,SDC占40wt%)中NiO750℃:NiO400℃=62wt%:38wt%时与SDC粉体共压共烧收缩基本匹配。DepartmentofMaterialsScience&EngineeringUSTC致谢本论文是在导师刘杏芹教授的悉心关怀和精心指导下完成的。刘老师严谨的治学态度、渊博的学识、富于创新的学术思想以及对科学的奉献精神都给我留下了深刻的印象,并受到极大的鼓舞,并将使我终生受益。在此谨向导师表示衷心的感谢和诚挚的敬意。在我论文完成的过程中特别需要感谢的是高建峰博士,他在我的实验和学习以及生活中,都不遗余力的给予我指导和帮助,在此对他表示
本文标题:SOFC
链接地址:https://www.777doc.com/doc-3310673 .html