您好,欢迎访问三七文档
ÉCOLEPOLYTECHNIQUEFÉDÉRALEDELAUSANNEHighOrderDiscontinuousGalerkinMethodSemesterProjectofBenjaminStammDirectedby:Prof.A.QuarteroniDr.E.BurmanSectionofMathematics,EPFL,LausanneJune24,20041CONTENTS2Contents1Motivation32Outline33TheTransport-ReactionProblem33.1UniquenessandexistenceofthevariationalformulationinL2()..43.2Stability.................................44ThepureTransportProblem54.1Stability.................................55DiscontinuousGalerkinMethod65.1Notations................................65.2Themethod...............................65.3ConvergenceAnalysis.........................106NumericalResults166.1Thecode.................................166.2TestProblem..............................166.2.1h-refinement..........................176.2.2N-refinement..........................186.3Conclusionsofthenumericaltests...................187Conclusion198IntroductiontoLegendre’spolynomials199Introductiontonumericalintegration2010AppendixA211MOTIVATION31MotivationStandardcontinuousGalerkin-basedfiniteelementmethodshavepoorstabilityprop-ertieswhenappliedtotransport-dominatedflowproblems,soexcessivenumericalsta-bilizationisneeded.Incontrast,theDiscontinuousGalerkinmethodisknowntohavegoodstabilitypropertieswhenappliedtofirstorderhyperbolicproblems.2OutlineInthissemesterprojectwewillconsidertheDiscontinuousGalerkinmethod.Insection3,thetransport-reactionproblemispresented.Itmentionsalsothehy-pothesisunderwhichuniquenessandexistenceofthevariationalformulationinL2isguaranteed.Astabilityresultfollows.Insection4,thepuretransportproblemispresentedaswellasastabilityresultforthisproblem.Section5introducestheDiscontinuousGalerkinmethodfollowedbyaconver-genceanalysis.Themainresultofthisprojectistheproofoftheconvergencetheorem.Section6dealswithnumericalresults.IntheframeworkofthissemesterprojectaMatlabcodeisdevelopedforthecomputationofanumericalapproximation.Themethodisappliedtoasimpletestcasewithknownsolution.Finally,theresultsareanalysed.Section7istheconclusionoftheDiscontinuousGalerkinmethod.Insections8and9wegivearudimentaryintroductiontoorthogonalpolynomialsandnumericalintegration.3TheTransport-ReactionProblemInthissection,thetransport-reactionproblemisstudiedwithnonconstantcoefficients.Thefollowingproblemisconsidered:Findu:!Rsuchthat:u+u=fin(1)u=gon (2)whereu=rudenotesthederivativeinthe-direction. isdefinedby =fx2@:n(x)0g,wheren(x)istheoutwardnormalunitvectoratthepointx.Analogously +isdefinedby +=fx2@:n(x)0g.isavectorfieldsuchthat2[W1;1()]d,and2L1(),f2H1(),g2H12( ).LetbeW=fw2L2():rw2L2()gL2()withnormkuk2W;=kuk2L2()+kruk2L2WisaHilbertspace.3THETRANSPORT-REACTIONPROBLEM43.1UniquenessandexistenceofthevariationalformulationinL2()Multiplying(1)byasmoothtestfunctionv:!Randintegratingonthedomainleadsto:Findu2W(K)Z(u+ru)v=Zfv8v2L2()LetVbethespaceV=fw2W:wj =ggW(3)Thebilinearforma:WL2()!RandthelinearformF:L2()!Raredefinedbya(u;v)=Z(u+ru)v8u2W;8v2L2()F(v)=Zvf8v2L2()Then,thevariationalformulationinL2()is:Findu2Vsuchthat:a(u;v)=F(v)8v2L2()(4)Itcanbeshownthatunderthehypothesisthatthereexistsaconstant0suchthat(x) 12r(x)00a.e.in(5)theconditionsoftheNeˇcasTheoremaresatisfied.Thatimpliesthatthereexistsauniquesolutionof(4).Inaddition,condition(5)isalsonecessaryforuniquenessandexistence.Formoredetailssee[1].3.2StabilityInthissection,astabilityresultfortheTransport-ReactionProblemonthewholedo-mainisdeveloped.Lemma3.1(stabilityforthetransport-reactionproblem)Ifitexistsaconstant1suchthat(x)108x2,thenthefollowingstabilityresultisgiven:1kuk2L2()+Z +jnju211kfk2L2()+Z jnjg2PROOF.Letustakeequation(1),multiplyitbyuandintegrateover.Weget(u;u)+(u;u)=(f;u)Then,thefollowingintegrationbypartsisused(u;u)= (u;u)+(nu;u)@= (u;u)+(jnju;u) + (jnjg;g) 4THEPURETRANSPORTPROBLEM5sothat(u;u)+12(jnju;u) +=(f;u)+12(jnjg;g) Now,theCauchy-Schwarzinequalityisappliedto(f;u).Thisleadsto2(u;u)+(jnju;u) +=2kfkkfk+(jnjg;g) FinallytheYounginequalitywith=121isapplied.Then1kuk2L2()+Z +jnju211kfk2L2()+Z jnjg24ThepureTransportProblemInthissection,thepureTransportProblemisconsidered:Findu:!Rsuchthatu=finRd(6)u=gon (7)Thenthevariationalformulationofthisproblemis:Findu2Wsuchthat:(u;v)=(f;v)8v2L2()(8)u=gon 4.1StabilityLemma4.1(stabilityforthepureTransportProblem)Inthecaseofthepuretrans-portproblem,i.e.if0andunderthehypothesisthatthereexistsavectorfunction2 L1(K)dsuchthatitexistsaconstant1whichsatisfies~~10then,thefollowingstabilityresultisgiven1ke ~~xuk2L2()+(jnje ~~xu;e ~~xu) +11ke ~~xfk2L2()+(jnje ~~xg;e ~~xg) PROOF.Letbe~u(~x)=e ~~xu(~x)andnotethatproblem(6)isequivalenttothefol-lowingproblem:Find~u:!Rsuchthat~r~u+~u=e ~~xfin~u=e ~~xgon where=~~.Thisisatransport-reactionproblemandthankstothehypothesis,Lemma(3.1)canbeapplied,sothatwegettheresult.5DISCONTINUOUSGALERKINMETHOD65DiscontinuousGalerkinMethod5.1NotationsLetusfirstintroducesomenotations.ConsideranelementK.Kcanbearbitraryasimplexoraparallelepiped,then@Kissplitinto@K =fx2@K:n(x)0g@K+=fx2@K:n(x)0gandwehavethat
本文标题:High Order Discontinuous Galerkin Method
链接地址:https://www.777doc.com/doc-3314054 .html