您好,欢迎访问三七文档
Feed-forwardNeuralNetsasModelsforTimeSeriesForecastingZaiyongTangBUS351Dept.ofDecision&InformationSciencesUniversityofFlorida,Gainesville,FL32611Phone:904-392-9600Email:zt@beach.cis.u .eduPaulA.Fishwick301CSE,DepartmentofComputer&InformationSciencesUniversityofFlorida,Gainesville,FL32611Phone:904-392-1414Email: shwick@cis.u .eduComputerScience:Feed-forwardneuralnetworks,applicationForecasting:TimeseriesAbstractWehavestudiedneuralnetworksasmodelsfortimeseriesforecasting,andourresearchcomparestheBox-Jenkinsmethodagainsttheneuralnetworkmethodforlongandshorttermmemoryseries.Ourworkwasinspiredbypreviouslypublishedworksthatyieldedinconsistentresultsaboutcomparativeperformance.Wehavesinceexperimentedwith16timeseriesofdi eringcomplexityusingneuralnetworks.TheperformanceoftheneuralnetworksiscomparedwiththatoftheBox-Jenkinsmethod.Ourexperimentsindicatethatfortimeserieswithlongmemory,bothmethodsproducedcomparableresults.However,forserieswithshortmemory,neuralnetworksoutperformedtheBox-Jenkinsmodel.Becauseneuralnetworkscanbeeasilybuiltformultiple-step-aheadforecasting,theypresentabetterlongtermforecastmodelthantheBox-Jenkinsmethod.Wediscussedtherepresentationability,themodelbuildingprocessandtheapplicabilityoftheneuralnetapproach.Neuralnetworksappeartoprovideapromisingalternativefortimeseriesforecasting.TR91-008ComputerandInformationSciences,UniversityofFlorida1IntroductionAtimeseriesisasequenceoftime-ordereddatavaluesthataremeasurementsofsomephysicalprocess.Forexample,onecanconsidertime-dependentsalesvolumeorrainfalldatatobeexamplesoftimeseries.Timeseriesforecastinghasanespeciallyhighutilityforpredictingeconomicandbusinesstrends.Manyforecastingmethodshavebeendevelopedinthelastfewdecades(Makridakis1982).TheBox-Jenkinsmethodisoneofthemostwidelyusedtimeseriesforecastingmethodsinpractice(BoxandJenkins1970).Recently,arti cialneuralnetworksthatserveaspowerfulcomputationalframeworkshavegainedmuchpopularityinbusinessapplicationsaswellasincomputerscience,psychologyandcognitivescience.Neuralnetshavebeensuccessfullyappliedtoloanevaluation,signaturerecog-nition,timeseriesforecasting(DuttaandShekhar1988;ShardaandPatil1990),classi cationanalysis(FisherandMcKusick1989;SingletonandSurkan1990),andmanyotherdi cultpat-ternrecognitionproblems(Simpson1990).Whileitisoftendi cultorimpossibletoexplicitlywritedownasetofrulesforsuchpatternrecognitionproblems,aneuralnetworkcanbetrainedwithrawdatatoproduceasolution.Concerningtheapplicationofneuralnetstotimeseriesforecasting,therehavebeenmixedreviews.Forinstance,LapedesandFarber(1987)reportedthatsimpleneuralnetworkscanoutperformconventionalmethods,sometimesbyordersofmagnitude.Theirconclusionsarebasedontwospeci ctimeserieswithoutnoise.Weigendetal.(1990)appliedfeed-forwardneuralnetstoforecastingwithnoisyreal-worlddatafromsunspotsandcomputationalecosystems.Aneuralnetwork,trainedwithpastdata,generatedaccuratefuturepredictionsandconsistentlyout-performedtraditionalstatisticalmethodssuchastheTAR(thresholdautoregressive)model(TongandLim1980).ShardaandPatil(1990)conductedaforecastingcompetitionbetweenneuralnetworkmodelsandatraditionalforecastingtechnique(namelytheBox-Jenkinsmethod)using75timeseriesofvariousnature.TheyconcludedthatsimpleneuralnetscouldforecastaboutaswellastheBox-Jenkinsforecastingsystem.Fishwick(1989)demonstratedthat,foraballisticstrajectoryfunctionapproximationproblem,theneuralnetworkusedo eredlittleTR91-008ComputerandInformationSciences,UniversityofFlorida2competitiontothetraditionallinearregressionandsurfaceresponsemodel.1Thepotentialofneuralnetsasmodelsfortimeseriesforecastinghasnotbeenstudiedsys-tematically.ShardaandPatil(1990)reportedthattheperformanceofneuralnetsandtheBox-Jenkinsmethodareonpar.Outofthe75seriestheytested,neuralnetsperformedbetterthantheBox-Jenkinsmethodfor39series,andworsefortheother36series.Onewouldaskwhenneuralnetsarebetterthantheothermethod?Cantheperformanceofneuralnetsbeimproved?Neuralnetmodelsaregenerallyregardedas\blackboxes.Fewresearchershaveexploredindetailneuralnetsastimesseriesforecastingmodels.Wewouldliketoaskwhyneuralnetscanbeusedasforecastingmodels,andwhyshouldtheybeabletocompetewithconventionalmethodssuchastheBox-Jenkinsmethod.Wewilltrytoanswerthequestionsraisedabovebyperformingaseriesofforecastingexper-imentsandanalysis.Di erentneuralnetstructuresandtrainingparameterswillbeused.TheperformanceofneuralnetsiscomparedwiththatoftheBox-Jenkinsmethod.Inthefollowingsection,wegiveabriefreviewofthetwoapproaches.Thesubsequentsectionpresentsthefore-castingexperimentresults.WediscusstheissuesinapplyingneuralnetsinforecastinginSection3.Thelastsectionpresentsasummaryofthestudyandourconclusions.1MethodologyBackgroundWhiletheBox-Jenkinsmethodisafairlystandardtimeseriesforecastmethod,neuralnetsasforecastmodelsarerelativelynew.Thus,inthefollowing,wepresentonlyabriefaccountoftheBox-Jenkinsmethodandgiveamoredetaileddescriptionoftheneuralnetapproach.Completetreatmentsofthetwomethodscanbefoundin(Ho 1983)and(Rumelhart,McClellandandthePDPResearchGroup1986).1Welaterdeterminedt
本文标题:Feed-forward neural nets as models for time series
链接地址:https://www.777doc.com/doc-3317233 .html