您好,欢迎访问三七文档
ESTIMATINGFEATURESOFADISTRIBUTIONFROMBINOMIALDATAArthurLewbelBostonCollegeOliverLintonLondonSchoolofEconomicsDanielMcFaddenUniversityofCalifornia,BerkeleyDecember5,2001AbstractAstatisticalproblemthatarisesinseveralÞeldsisthatofestimatingthefeaturesofanunknowndis-tribution,whichmaybeconditionedoncovariates,usingasampleofbinomialobservationsonwhetherdrawsfromthisdistributionexceedthresholdlevelssetbyexperimentaldesign.Oneapplicationisde-structivedurationanalysis,wheretheprocessiscensoredatanobservationtesttime.Anotherisreferen-dumcontingentvaluationinresourceeconomics,whereoneisinterestedinfeaturesofthedistributionofvaluesplacedbyconsumersonapublicgoodsuchasendangeredspecies.SampleconsumersareaskedwhethertheywouldvoteforareferendumthatwouldprovidethegoodatacostspeciÞedbyexperimen-taldesign.Thispaperprovidesestimatorsformomentsandquantilesoftheunknowndistributioninthisproblem.ThisresearchwassupportedinpartbytheNationalScienceFoundationthroughgrantsSES-9905010andSBR-9730282,andbytheE.MorrisCoxEndowment.DepartmentofEconomics,BostonCollege,140CommonwealthAvenue,ChestnutHill,MA02467,USA.Phone:(617)552-3678.E-mailaddress:lewbel@bc.eduDepartmentofEconomics,LondonSchoolofEconomics,HoughtonStreet,LondonWC2A2AE,UnitedKingdom.E-mailaddress:lintono@lse.ac.ukDepartmentofEconomics,UniversityofCalifornia,Berkeley,CA94720-3880,USA.E-mailaddress:mcfad-den@econ.berkeley.edu11IntroductionAstatisticalproblemthatarisesinseveralÞeldsisthatofestimatingthefeaturesofanunknowndistribu-tion,whichmaybeconditionedoncovariates,usingasampleofbinomialobservationsonwhetherdrawsfromthisdistributionexceedthresholdlevelssetbyexperimentaldesign.Threeapplicationsillustratetheproblem:Bioassay-Findthedistributionofsurvivaltimesuntiltheonsetofanabnormalityinlaboratoryanimalsexposedtoanenvironmentalhazard.TheanimalsaresacriÞcedattimesdeterminedbyexperimentaldesign,andtestedfortheabnormality.Anobservationconsistsofavectorofcovariates,atesttime,andanindicatorforthetestresult.DestructiveTesting-Findthedistributionofspeedsatwhichairbagsfailtoprotectpassengersinautomobilecrashes.Atspeedsselectedbyexperimentaldesign,drivecarsintoabarrieranddeterminewhetheradummyoccupantisinjured.Anobservationconsistsofcovariates,atestspeed,andanindicatorforinjury.SurveyresearchwithShadowEffects-Findthedistributionofahouseholdeconomicvariablesuchaswealth.Subjectsareaskediftheireconomicvariableexceedsatestvaluechosenbydesign.Anobservationconsistsofcovariates,atestvalue,anindicatorfortheresponse.FollowupqueriesareshadowedbytheframingeffectoftheÞrstbid.Thisshadowingeffectiscommoninunfoldingbracketsurveyquestionsoneconomicvariables,andonstatedwillingnesstopay(WTP)foreconomicgoods.1Givenasetofcovariates,whentheexperimentaldesignisrandomizedwithastrictlypositivetestvaluedensityandmildregularityconditions,weproposeconsistentestimatorsforconditional(oncovariates)momentsoftheunknowndistribution.Wealsoproviderootnconsistentestimatorsforthecasewheretheunknowndistributiondependsoncovariatesthroughasingleindexlocationshift.Inaddition,weprovideestimatorsofconditionalquantilesoftheunknowndistribution.1McFadden(1994)providesreferencesandexperminatalevidencethatresponsestofollowuptestvaluescanbebiased.Thereareadditionalissuesoftheimpactofframingofquestionsonsurveyresponses,particularlyanchoringtotestvalues,includingtheinitialtestvalue;seeGreenetal.(1998)andHurdetal.(1998).Thedatagenerationprocessmaythenbeaconvolutionofthetargetdistributionandadistributionofpsychometricerrors.Thispaperwillignoretheseissuesandtreatthedatagenerationprocessasifitisthetargetdistribution.ThedifÞcultproblemofdeconvolutingatargetdistributioninthepresenceofpsychometricerrorsisleftforfutureresearch.22ModelSpeciÞcationThegoalisestimationofconditionalmomentsorquantilesofalatent,unobservedrandomscalarW,condi-tionedonavectorofobservedcovariatesX.TheconditionalcumulativedistributionfunctionofW,denotedGx,isunknownbutassumedtobesmooth.Atestvalueissetbyarandomizedexperimentaldesignornaturalexperiment.ThevalueisarealizationofarandomvariableVdrawnfromeitheraknownorunknownconditionaldensityhx(weconsiderbothcases).ItisassumedthatWisconditionallyindependentofV,conditioningonX(consistentwithexperimentaldesign).DeÞneYtoequaloneintheeventthatWexceedsV,andzerootherwise,soYIWVwhereIistheindicatorfunction.TheobserveddataconsistofarandomsampleofrealizationsofcovariatesX,testvaluesV,andoutcomesY.Theframeworkissimilartorandomcensoredregressions(withcensoringpoint),exceptthatforrandomcensoringwewouldobserveforobservationshaving,whereasinthepresentcontextweonlyobserveyI.Givenafunctionrx,thegoalisestimationoftheconditionalmomentrxE[rWXXx]foranychosenxinthesupportofX.OfparticularinterestarethemomentsbasedonrWXWkforintegerskInadditiontomomentswemayalsobeinterestedinquantiles.LetqxdenotetheqthquantileofWgivenxIftheconditionaldistributionofWgivenXxisÞnitelyparameterized,thenthoseparameterscangenerallybeefÞcientlyestimatedbymaximumlikelihood(correspondingtoordinarybinarychoicemodelestimation,
本文标题:Estimating Features of a Distribution From Binomia
链接地址:https://www.777doc.com/doc-3335715 .html