您好,欢迎访问三七文档
ARIEMANNHYPOTHESISFORCHARACTERISTICpL-FUNCTIONSDAVIDGOSSAbstract.WeproposeanalogsoftheclassicalGeneralizedRiemannHypothesisandtheGeneralizedSimplicityConjectureforthecharacteristicpL-seriesassociatedtofunction eldsovera nite eld.Theseanalogsarebasedontheuseofabsolutevalues.Furtherweuseabsolutevaluestogivesimilarreformulationsoftheclassicalconjectures(with,perhaps, nitelymanyexceptionalzeroes).Weshowhowbothsetsofconjecturesbehaveinremarkablysimilarways.1.IntroductionThearithmeticoffunction eldsattemptstocreateamodelofclassicalarithmeticusingDrinfeldmodulesandrelatedconstructionssuchasshtuka,A-modules, -sheaves,etc.Letkbeonesuchfunction eldovera nite eldFrandlet1bea xedplaceofkwithcompletionK=k1.ItiswellknownthatthealgebraicclosureofKisin nitedimensionaloverKandthat,moreover,Kmayhavein nitelymanydistinctextensionsofaboundeddegree.Thusfunction eldsareinherently\looserthannumber eldswherethefactthat[C:R]=2o ersconsiderablerestraint.Assuch,objectsofclassicalnumbertheorymayhavemanydi erentfunction eldanalogs.Classifyingthedi erentaspectsoffunction eldarithmeticisalengthyjob.One ndsforinstancethattherearetwodistinctanalogsofclassicalL-series.OneanalogcomesfromtheL-seriesofDrinfeldmodulesetc.,andistheoneofinteresthere.TheotheranalogarisesfromtheL-seriesofmodularformsontheDrinfeldrigidspaces,(see,forinstance,[Go2]).Itisaverycuriousphenomenonthatthe rstanalogpossessesnoobviousfunctionalequationwhereasthesecondoneindeedhasafunctionalequationverysimilartotheclassicalversions.ItisevenmorecuriousthattheL-seriesofDrinfeldmodulesandthelikeseemtopossessthecorrectanalogsoftheGeneralizedRiemannHypothesisandtheGeneralizedSimplicityConjecture(seeConjecture3below).Itisourpurposeheretode nethesecharacteristicpconjecturesandshowjusthowclosetheyaretotheirclassicalbrethren.ThattheremightbeagoodRiemannHypothesisinthecharacteristicptheory rstarosefromtheground-breakingwork[W1]ofDaqingWan.Inthispaper,andinthesimplestpossiblecase,WancomputedthevaluationsofzeroesofananalogoftheRiemannzetafunctionviathetechniqueofNewtonpolygons.Thisimmediatelyimpliedthatthesezeroesareallsimpleandlieona\line.However,becauseofthegreatsizeofthefunction eldarena(asmentionedabove),itwasnotimmediatelyclearhowtothengoontostateaRiemannHypothesisinthefunction eldcasewhichworkedforallplacesofk(asexplainedinthispaper)andallfunctionsarisingfromarithmetic.Recently,theL-functionsoffunction eldarithmeticwereanalyticallycontinuedintotalgenerality(asgeneralasonecouldimaginefromtheanalogywithclassicalmotives).ThisisDate:October,1999.ThispaperisrespectfullydedicatedtoBernardAlterandShirleyHasnas.12DAVIDGOSSduetotheforthcomingworkofG.BoeckleandR.Pink[BP1]whereanappropriatecoho-mologytheoryiscreated.Thistheory,combinedwithcertainestimatesprovidedbyBoeckle,ontheonehand,andY.Amice[Am1],ontheother,actuallyallowsonetoanalyticallycon-tinuethenon-ArchimedeanmeasuresassociatedtotheL-series;theanalyticcontinuationoftheL-seriesthemselvesthenarisesasacorollary.InparticularwededucethatallsuchL-functions,viewedatallplacesofk,haveremarkablysimilaranalyticproperties(forinstance,theirexpansioncoe cientsalldecayexponentially|seethediscussionafterRemarks2).Motivatedbytheseresults,were-examinedtheworkofWanandthosewhocameafterhim([DV1],[Sh1]).InseekingtorephraseWan’sresultsinsuchawayastoavoidhavingtocomputeNewtonpolygons(whichlookstobeexceedinglycomplicatedingeneral),wearrivedatastatementinvolvingonlytheuseofabsolutevaluesofzeroes(asopposedtotheabsolutevaluesofexpansioncoe cientswhichareusedinNewtonpolygons).TheuseofabsolutevaluesinphrasingsuchapossibleRiemannHypothesisseemstobeveryfruitful.Forinstance,ito ersauni cationwithlocalRiemannHypotheses(whicharealwaysformu-latedintermsofabsolutevaluesofthezeroes).Morestrikingly,italsosuggestsasuitablereformulationoftheclassicalGRH(with,perhaps, nitelymanyexceptionalzeroes)aswellasthesimplicityconjectures(seeConjecture6andProposition7).Finally,asexplainedafterRemarks4,theconjecturespresentedheregoaverylongwaytowardsexplainingthelackofaclassicalstylefunctionalequationassociatedtotheL-seriesofDrinfeldmodulesetc.Uponexaminingthesenew\absolutevalueconjecturesinboththeories,one ndsthattheybehaveremarkablyalike.SomuchsothattheyseemtoalmostbetwoinstancesofonePlatonicmold.Thiscertainlyaddstooursensethatthefunction eldstatementsmayindeedbethecorrectones.Moreover,becausethealgebraicclosureofKissovastandcontainsinseparableextensions,thefunction eldtheoryo ersinsightintothesestatementsnotavailableinnumber elds.Forinstance,duetotheexistenceofinseparableextensions,oneneedsboththefunction eldanalogoftheGRHandthefunction eldanalogoftheSimplicityConjecture(Conjecture7)totrulydeducethatthezeroes(oralmostallofthem)lieonaline!BecauseCisobviouslyseparableoverRoneonlyneedstheGRH,(reformulatedasConjecture6)classically.Itshouldbenotedthatwedonotyetknowtheimplicationsofourfunction eldcon-jectures.However,itisourhopethatsuchinformationwillbefoundasabyproductofthesearchforaproofofthem.Moreover,becauseofthestrongformalanalogiesbetweenthenumber eldandfunction eldconjecturesasprese
本文标题:A Riemann hypothesis for characteristic p L-functi
链接地址:https://www.777doc.com/doc-3346154 .html