您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 项目/工程管理 > 平面向量的正交分解及坐标表示hjh
2.3.2平面向量的正交分解及坐标表示复习平面向量基本定理如果e1,e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a,有且只有一对实数λ1,λ2使a=λ1e1+λ2e2(1)我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底;(2)基底不唯一,关键是不共线;(3)由定理可将任一向量a在给出基底e1、e2的条件下进行分解;(4)基底给定时,分解形式唯一.λ1,λ2是由a,e1、e2唯一确定的数量。a=λ1e1+λ2e2复习G=F1+F2F1F2GG=F1+F2叫做重力G的分解类似地,由平面向量的基本定理,对平面上的任意向量a,均可以分解为不共线的两个向量λ1a1和λ2a2,使a=λ1a1+λ2a2新课引入G与F1,F2有什么关系?把一个向量分解为两个互相垂直的向量,叫做把向量正交分解aλ1a1λ2a2F1F2G正交分解我们知道,在平面直角坐标系,每一个点都可用一对有序实数(即它的坐标)表示,对直角坐标平面内的每一个向量,如何表示?在平面上,如果选取互相垂直的向量作为基底时,会为我们研究问题带来方便。ayOxxiyjji分别取与x轴、y轴方向相同的两个单位向量i、j作为基底.任作一个向量a,由平面向量基本定理知,有且只有一对实数x、y,使得a=xi+yj把(x,y)叫做向量a的坐标,记作:a=(x,y)其中x叫做a在x轴上的坐标,y叫做a在y轴上的坐标i=j=0=(1,0)(0,1)(0,0)ayOxxiyjjia=(x,y)yxAa如图,在直角坐标平面内,以原点O为起点作OA=a,则点A的位置由a唯一确定。yxOji设OA=xi+yj,则向量OA的坐标(x,y)就是点A的坐标;a(x,y)因此,在平面直角坐标系内,每一个平面向量都可以用一对实数唯一表示。反过来,点A的坐标(x,y)也就是向量OA的坐标。练习:在同一直角坐标系内画出下列向量.(1)(1,2)a(2)(1,2)b(1,2)A.xyoaxyo(1,2)B.b例1.用基底i,j分别表示向量a,b,c,d,并求出它们的坐标.-4-3-2-11234ABij12-2-1Oxyabcd45323(2,3)ABij23(2,3)bij23(2,3)cij23(2,3)dij2.3.3平面向量的坐标运算1.已知a,b,求a+b,a-b.),(11yx),(22yx解:a+b=(i+j)+(i+j)1x1y2x2y=(+)i+(+)j1x2x1y2y即),(2121yyxxa+b同理可得a-b),(2121yyxx两个向量和与差的坐标分别等于这两向量相应坐标的和与差2.已知.求),(),(2211yxByxA,AB),(11yxA),(22yxBxyO解:OAOBAB),(),(2211yxyx),(1212yyxx一个向量的坐标等于表示此向量的有向线段的终点的坐标减去始点的坐标.实数与向量的积的坐标等于这个实数乘原来的向量的相应坐标.),(yxa例2.已知a=(2,1),b=(-3,4),求a+b,a-b,3a+4b的坐标.解:a+b=(2,1)+(-3,4)=(-1,5);a-b=(2,1)-(-3,4)=(5,-3);3a+4b=3(2,1)+4(-3,4)=(6,3)+(-12,16)=(-6,19)例3.已知ABCD的三个顶点A、B、C的坐标分别为(-2,1)、(-1,3)、(3,4),求顶点D的坐标.解:设顶点D的坐标为(x,y)),()),( 211321(AB)4,3(yxDC,得由DCAB)4,3()2,1(yxyx4231 22yx),的坐标为( 顶点22D随堂练习1a=4,6,a=2b,b、且那么的坐标是A、(3,2)B、(2,3)C、(-3,-2)D、(-2,-3)B2a=x-2,3b=1,y+2、若向量与向量相等,那么A、x=1,y=3B、x=3,y=1C、x=1,y=-3D、x=5,y=-1B3AB=x,y,B-2,1,OA、已知的坐是那么的标坐标为A、(x-2,y+1)B、(x+2,y-1)C、(-2-x,1-y)D、(x+2,y+1)C4a=1,1,b=1,-1,c=-1,2,c13133131A-a+bBa-bCa-bD-a+b22222222、若向量那么等于、、、、B5a=3,-1,b=-1,2,-3a-2bA7,1B-7-1C-7,1D7-1、已知那么等于、、,、、,B6Bm,n,AB、已知的坐是标的坐标为(i,j),则点A的坐标为A、(m-i,n-j)B、(i-m,j-n)C、(m+i,n+j)D、(m+n,i+j)A27a=x+3,x-3x-4ABA1,2,B3,2,xA-1B-14C4D1-4、若向量与相等,已知那么的值是、、或、、或A8、平面直角坐标系中,O为坐标原点,已知两点A(3,1),B(-1,3),若点C(x,y)满足OC=OA+OB,其中α,β∈R,且α+β=1,则x,y所满足的关系式为A、3x+2y-11=0B、(x-1)2+(y-2)2=5C、2x-y=0D、x+2y-5=0D9、若M、N两点的坐标分别为(2,4)和(-2,1),则MN的坐标为__________,NM的坐标为_________(-4,-3)(4,3)10A-1-5a=2,3,AB=3a,、已知,和向量若则点B的坐标是__________(5,4)11AB=2-1AC=-4,1BC=________、已知,,,那么12F=1,1F=2,3,,12、作用于原点的两个力为使它们平衡,需加力3F=_________(-6,2)(-3,-4)小结平面向量的正交分解平面向量的坐标表示
本文标题:平面向量的正交分解及坐标表示hjh
链接地址:https://www.777doc.com/doc-3367125 .html