您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 咨询培训 > 等腰三角形的性质(公开课)课件
八年级上册13.3.1等腰三角形(第1课时)授课教师:勐捧中学王文转如图,把一张长方形的纸按图中虚线对折,并剪去绿色部分,再把它展开,得到的△ABC有什么特点?ABCAB=AC等腰三角形活动(一):动手操作ABC等腰三角形:有两条边相等的三角形,叫做等腰三角形.相等的两条边叫做腰,另一条边叫做底边,底边与腰的夹角叫做底角.两腰所夹的角叫做顶角,腰腰底边顶角底角回顾上面剪出的等腰三角形是轴对称图形吗?ABCD把剪出的等腰三角形ABC沿折痕对折,找出其中重合的线段和角,填入下表:重合的线段重合的角等腰三角形除了两腰相等以外,你还能发现它的其他性质吗?AB=ACBD=CDAD=AD∠B=∠C∠ADB=∠ADC∠BAD=∠CAD活动(二):细心观察大胆猜想设问:你发现了什么现象,猜想等腰△ABC有哪些性质?角:①∠B=∠C②∠BAD=∠CDA③∠ADC=∠ADB=900边:④BD=CD→两个底角相等→AD为顶角∠BAC的平分线→AD为底边BC上的高→AD为底边BC上的中线结论:等腰三角形是轴对称图形;等腰三角形性质:性质1等腰三角形的两个底角相等。(简写成“等边对等角”);性质2等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。(可简记为“三线合一”)性质3等腰三角形是轴对称图形,其顶角的平分线(底边上的中线、底边上的高)所在的直线就是等腰三角形的对称轴。性质1(等边对等角)等腰三角形的两个底角相等。ABCD已知:△ABC中,AB=AC求证:∠B=C想一想:1.如何证明两个角相等?议一议:2.如何构造两个全等的三角形?活动(三):小组讨论已知:如图,在△ABC中,AB=AC.求证:∠B=∠C.ABC等腰三角形的两个底角相等。D证明:作底边的中线AD,则BD=CDAB=AC(已知)BD=CD(已作)AD=AD(公共边)∴△BAD≌△CAD(SSS).∴∠B=∠C(全等三角形的对应角相等).在△BAD和△CAD中方法一:作底边上的中线已知:如图,在△ABC中,AB=AC.求证:∠B=∠C.ABC等腰三角形的两个底角相等。D证明:作顶角的平分线AD,则∠1=∠2AB=AC(已知)∠1=∠2(已作)AD=AD(公共边)∴△BAD≌△CAD(SAS).∴∠B=∠C(全等三角形的对应角相等).方法二:作顶角的平分线在△BAD和△CAD中12已知:如图,在△ABC中,AB=AC.求证:∠B=∠C.ABC等腰三角形的两个底角相等。D证明:作底边的高线AD,则∠BDA=∠CDA=90°AB=AC(已知)AD=AD(公共边)∴Rt△BAD≌Rt△CAD(HL).∴∠B=∠C(全等三角形的对应角相等).方法三:作底边的高线在Rt△BAD和Rt△CAD中(等腰三角形三线合一)ABCD性质2等腰三角形的顶角平分线与底边上的中线,底边上的高互相重合(如何证明)活动(四):小组讨论1.根据等腰三角形性质2填空,在△ABC中,AB=AC,(1)∵AD⊥BC,∴∠_____=∠_____,____=____.(2)∵AD是中线,∴____⊥____,∠_____=∠_____.(3)∵AD是角平分线,∴____⊥____,_____=_____.ABCDBADCADCADBDCDADBCBDBADBCADCD知一线得二线“三线合一”可以帮助我们解决线段的垂直、相等以及角的相等问题。1、等腰三角形一个底角为70°,它的顶角为______.2、等腰三角形一个角为70°,它的另外两个角为__________________.3、等腰三角形一个角为110°,它的另外两个角为___________.①顶角度数+2×底角度数=180°②0°<顶角度数<180°③0°<底角度数<90°结论:在等腰三角形中,40°35°,35°70°,40°或55°,55°例1、如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求△ABC各角的度数。1、图中有哪几个等腰三角形?ABCDx⌒2x2x△ABC△ABD△BDC2、有哪些相等的角?∠ABC=∠ACB=∠BDC∠A=∠ABD3、这两组相等的角之间还有什么关系?∠BDC=2∠A∠ABC+∠ACB+∠A=180°例1、如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求△ABC各角的度数。ABCD解:∵AB=AC,BD=BC=AD,∴∠ABC=∠C=∠BDC,∠A=∠ABD(等边对等角)设∠A=x,则∠BDC=∠A+∠ABD=2x,从而∠ABC=∠C=∠BDC=2x,于是在△ABC中,有∠A+∠ABC+∠C=x+2x+2x=180°,解得x=36°,在△ABC中,∠A=36°,∠ABC=∠C=72°x⌒2x2x谈谈你的收获!轴对称图形两个底角相等,简称“等边对等角”顶角平分线、底边上的中线、和底边上的高互相重合,简称“三线合一”课外作业:作业:教科书77页练习第1、2、3题
本文标题:等腰三角形的性质(公开课)课件
链接地址:https://www.777doc.com/doc-3390561 .html