您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 项目/工程管理 > 61三角函数模型的简单应用
例1如图,某地一天从6~14时的温度变化曲线近似满足函数y=Asin(ωx+φ)+b(1)求这一天6~14时的最大温差;(2)写出这段曲线的函数解析式.61014yT/℃xt/h102030O探究一:根据图象建立三角函数关系解:(1)最大温差是20℃(2)从6~14时的图象是函数y=Asin(ωx+φ)+b的半个周期的图象61014yT/℃xt/h102030O13010102A13010202b1214628将x=6,y=10代入上式,解得34310sin20,6,1484yxx所求出的函数模型只能近似刻画这天某个时段温度变化,因此应当特别注意自变量的变化范围所以题型总结:maxmin1A=fx-fx2maxmin1b=fx+fx2利用求得2πT=,ωω利用最低点或最高点在图象上该点的坐标满足函数解析式可求得,φ也可以利用函数的零值点来求.f求函数的方法:(x)=Asin(x+)+b例2画出函数y=|sinx|的图象并观察其周期.xy-11O2222y=|sinx|解周期为π验证:|sin(x+π)|=|-sinx|=|sinx|利用函数图象的直观性,通过观察图象而获得对函数性质的认识,这是研究数学问题的常用方法。显然,函数y=|sinx|与正弦函数有紧密的联系,你能利用这种联系说说它的图象的作法吗?正弦函数y=sinx的图象保留x轴上方部分,将x轴下方部分翻折到x轴上方,得到y=|sinx|的图象例4海水受日月的引力,在一定的时候发生涨落的现象叫潮.一般地,早潮叫潮,晚潮叫汐.在通常情况下,船在涨潮时驶进航道,靠近码头;卸货后,在落潮时返回海洋.下面是某港口在某季节每天的时间与水深关系表:时刻水深/米时刻水深/米时刻水深/米0:005.09:002.518:005.03:007.512:005.021:002.56:005.015:007.524:005.0探究三:根据相关数据进行三角函数拟合(1)选用一个函数来近似描述这个港口的水深与时间的函数关系,给出整点时的水深的近似数值(精确到0.001).(2)一条货船的吃水深度(船底与水面的距离)为4米,安全条例规定至少要有1.5米的安全间隙(船底与洋底的距离),该船何时能进入港口?在港口能呆多久?(3)若某船的吃水深度为4米.安全间隙为1.5米,该船在2:00开始卸货,吃水深度以每小时0.3米的速度减少,那么该船在什么时间必须停止卸货,将船驶向较深的水域?课件演示解:(1)以时间为横坐标,水深为纵坐标,在直角坐标系中画出散点图3691215182124Oxy642根据图象,可以考虑用函数y=Asin(x+)+h刻画水深与题意之间的对应关系.A=2.5,h=5,T=12,=0.612,2T得由所以,港口的水深与时间的关系可用近似描述.56sin5.2xy时刻0:001:002:003:004:005:006:007:008:009:0010:0011:00水深5.0006.2507.1657.57.1656.2505.0003.7542.8352.5002.8353.754时刻12:0013:0014:0015:0016:0017:0018:0019:0020:0021:0022:0023:00水深5.0006.2507.1657.57.1656.2505.0003.7542.8352.5002.8353.75456sin5.2xy由得到港口在整点时水深的近似值:(2)货船需要的安全水深为4+1.5=5.5(米),所以当y≥5.5时就可以进港.5.556sin5.2x2.06sinx由计算器可得SHIFTsin-1MODEMODE20.2=0.20135792≈0.2014ABCDy=5.5yOx5101524682.5sin56yx因此有两个交点的图象与直线函数内在区间B,A,5.556sin5.2,0,12yxy2014.06-,2014.06或x6152.5,3848.0BAxx6152.176152.512,3848.123848.012:DCxx由函数的周期性易得因此,货船可以在0时30分左右进港,早晨5时30分左右出港;或在中午12时30分左右进港,下午17时30分左右出港.每次可以在港口停留5小时左右.O246810xy86422.5sin56yx5.50.32yxP(3)设在时刻x货船的安全水深为y,那么y=5.5-0.3(x-2)(x≥2).在同一坐标系内作出这两个函数,可以看到在6~7时之间两个函数图象有一个交点.通过计算.在6时的水深约为5米,此时货船的安全小深约为4.3米.6.5时的水深约为4.2米,此时货船的安全小深约为4.1米;7时的小深约为3.8米,而货船的安全小深约为4米.因此为了安全,货船最好在6.5时之前停止卸货,将船驶向较深的水域.三角函数作为描述现实世界中周期现象的一种数学模型,可以用来研究很多问题,在刻画周期变化规律、预测其未来等方面都发挥十分重要的作用。具体的,我们可以利用搜集到的数据,作出相应的“散点图”,通过观察散点图并进行函数拟合而获得具体的函数模型,最后利用这个函数模型来解决相应的实际问题。课堂练习课本P65练习T21.根据三角函数图象建立函数解析式,就是要抓住图象的数字特征确定相关的参数值,同时要注意函数的定义域.2.对于现实世界中具有周期现象的实际问题,可以利用三角函数模型描述其变化规律.先根据相关数据作出散点图,再进行函数拟合,就可获得具体的函数模型,有了这个函数模型就可以解决相应的实际问题.小结作业作业:P65练习:1,3.
本文标题:61三角函数模型的简单应用
链接地址:https://www.777doc.com/doc-3399653 .html