您好,欢迎访问三七文档
arXiv:math/0110188v1[math.CO]17Oct2001RandomPartitionswithnonnegativerthdifferencesRodCanfielda,SylvieCorteelb,PawelHitczenkocerc@cs.uga.edu,syl@prism.uvsq.fr,phitczen@mcs.drexel.eduaDepartmentofComputerScience,UniversityofGeorgiaAthens,GA30602,USAbPRiSM,Universit´edeVersailles,45Av.desEtatsUnis,78035VERSAILLES,FrancecDepartmentofMathsandComputerScience,DrexelUniversity,Philadelphia,PA19104,USAFebruary1,2008AbstractLetPr(n)bethesetofpartitionsofnwithnonnegativerthdifferences.LetλbeapartitionofanintegernchosenuniformlyatrandomamongthesetPr(n)Letd(λ)beapositiverthdifferencechosenuniformlyatrandominλ.Theaimofthisworkistoshowthatforeverym≥1,theprobabilitythatd(λ)≥mapproachestheconstantm−1/rasn→∞Thisworkisageneralizationofaresultonintegerpartitions[7]andwasmotivatedbyarecentidentitybyAndrews,PauleandRiese’sOmegapackage[3].Toprovethisresultweusebijective,asymptotic/analyticandprobabilisticcombinatorics.1IntroductionLetusfirststartbyafewdefinitionsandnotations.Apartitionλofnisasequenceofintegersλ=(λ1,λ2,...,λk)withλ1≥λ2...≥λk≥1andkXj=1λj=n.1Thesamepartitionλcanalsobewritteninitsfrequentialnotation,thatis:λ=nmn(n−1)mn−1...1m1withmj=|{i|λi=j}|,1≤j≤n.Thenumbermjiscalledthemultiplicityofthepartjinλ.Inthesequelwewillusebothrepresentations.Wenowdefinetherthdifferences.Letλ=(λ1,λ2,...,λk)beapartitionofnandΔr(λ)=(Δr1(λ),...,Δrk(λ))beitsrthdifferences.Therthdifferencescanbecomputedbythefollowingrecurrence:Δri(λ)=λiifi=korr=0Δr−1i(λ)−Δr−1i+1(λ)otherwiseInthesequelwewillwriteΔri(λ):Δriforshort.LetPrbethesetofpartitionswithnonnegativerthdifferences,thatistosay,(λ1,λ2,...,λk)∈PrifandonlyifΔri≥0for1ik.LetPr(n)bethesetofpartitionsλ∈Prwith|λ|=nandletpr(n)=|Pr(n)|.Thisworkwasmotivatedbytwopreviousresults.Thefirstresultisanidentityonpartitionswithnonnegativerthdifferences.ItwasdiscoveredbyAndrews,PauleandRiese’sOmegapackage.Theorem1[2,3]Thereisaone-to-onecorrespondencebetweenthepartitionsinPr(n)andthepartitionsofnintoparts i+rr,i≥0.Thesecondresultisonordinaryintegerpartitions(partitionswithnonnegative1stdifferences):Theorem2[7]Letλbeapartitionofanintegernchosenuniformlyatrandomamongthesetofallpartitionsofn.Letd(λ)beapartsizechosenuniformlyatrandomfromthesetofallpartsizesthatoccurinλ.Foreverym≥1,theprobabilitythatd(λ)≥mapproachestheconstant1/masn→∞.Notethatofr=1thereexistsaonetoonecorrespondencebetweenthenumberofpositive1stdifferencesinanygivenpartitionandthenumberpartsizesofitsconju-gate.OuraimisthereforetogeneralizetheresultofTheorem2byusingtheidentityofTheorem1.Letusnowstateourgeneralization:2Theorem3LetλbeapartitionofanintegernchosenuniformlyatrandomamongthesetPr(n)ofallpartitionsofnwithnonnegativerthdifferences.Letd(λ)beapositiverthdifferencechosenuniformlyatrandomfromthesetofallpositivediffer-encesthatoccurinλ.Foreverym≥1,theprobabilitythatd(λ)≥mapproachestheconstantm−1/rasn→∞.ThepurposeofthispaperistoproveTheorem3.Wenowpresenttheorganizationofthepaper.WewillfirstgiveinSection2asimplebijectionoftheidentityofTheorem1thatgivesseveralrefinementsoftheidentity.Thisbijectionwasadver-tised/announcedbyZeilbergerinhisveryownjournal[6].WethenpresentinSection3someasymptoticresultsonthenumberofpartitionsinPr(n)and,thankstothebijection,ontheaveragenumberofpositiverthdifferencesinthepartitionsinPr(n).WefinallyuseinSection4someprobabilisticargumentswhichgeneralizetheworksonordinarypartitions[8,7].Theassociationofthethreepartsgivesustheproofofourresult.WeconcludethepaperbypresentingsomefutureworkinSection5.2BijectiveCombinatoricsInthissectionwearegoingtopresentabijectionfbetweenthepartitionsinPr(n)andthepartitionsofnintoparts i+rr,i≥0.Letλ=(λ1,λ2,...,λk)beapartitioninPr(n)thenitsimagebythebijectionfinitsfrequentialnotationis:f(λ)=k−1+rrΔrkk−2+rrΔrk−1...rrΔr1wheretheΔri(1≤i≤k)aretherthdifferencesofλ.Isisclearthatf(λ)isapartitionintoparts r+irwithi≥0.Nowletusprovethatf(λ)isapartitionofn.¿FromthedefinitionofΔr(λ),itiseasytoseethatλi=kXj=ir+k−j−1r−1Δrj.As r+i−1r=Pi−1j=0 r+j−1r−1,wehave|f(λ)|=|λ|.WecanreconstructλfromΔr(λ).Thereversemappingf−1istheneasytodefine.Letμbeapartitionofnintoparts r+irwithμ1= k+r−1r.Letμ(i)bethemultiplicityofthepart i−1+rrinμ,1≤i≤k.Thenf−1(μ)=kXj=1r+k−j−1r−1μ(j),kXj=2r+k−j−1r−1μ(j),...,r−1r−1μ(k)!.3Itistheneasytoseethatfisabijection.Notethatifr=1thenf(λ)=λ′,theconjugateofλ.Aswesaidintheintroduction,thisbijectiongivessomerefinementsoftheidentity.Letusnowpresenttheserefinements:Theorem4Thereisaone-to-onecorrespondencebetweenthepartitionsinPr(n)withkpartsandjpositiverthdifferencesandthepartitionsofnintoparts i+rr,i≥0,whoselargestpartis k−1+rrandwithjpartssizes.Proof.Straightforwardwiththebijection.2Letusnowillustratetherefinementsthankstogeneratingfunctionsandarecurrence.Letpr(n,k,m)bethenumberofpartitionsinPr(n)withkpartsandPki=1Δri=m.ThenXn,k≥0pr(n,k,m)qnykxm=1+Xk≥1ykxq(k−1+rr)(1−xq(rr))(1−xq(r+1r))...(1−xq(r+k−1r))Letpr,≤(n,k,m)bethenumberofpartitionsinPr(n)withatmostkpartsandPki=1Δri=m,thenXn≥0pr,≤(n,k,m)qnxm=kYi=0(1−xq(i+rr))−1.Letpr,≤(n,k)bethenumberofpartitionsinPr(n)withatmostkparts.Wecangetaneasyrecurrencetocomputethi
本文标题:Random partitions with non negative rth difference
链接地址:https://www.777doc.com/doc-3451572 .html