您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > (课件)1.1任意角和弧度制-修改-2
必修41.1任意角的概念2.初中学习过哪些角?锐角、直角、钝角、平角、和周角1.初中所学角是如何定义的?具有公共顶点的两条射线组成的图形3.初中学习的角的范围?0ºα≤360º观察一组图片1.钟表的指针旋转2.自行车的车轮周而复始地转动一根辐条平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形OA:角的始边OB:角的终边O:角的顶点(一)角的概念:0AB类比初中数的扩展学习,我们可以把这种运动形成的角推广到任意角。为了方便规定:按逆时针方向旋转所形成的角叫做正角按顺时针方向旋转所形成的角叫做负角没有作任何旋转形成的角叫做零角OA(B)(二)角的大小:α=-10º012000角的概念推广后,它包括任意大小的正角、负角和零角720º-380º请动手作一作:-900在直角坐标系内,角的顶点与原点重合,始边与x轴的非负半轴重合,那么角的终边在第几象限,我们就说这个角是第几象限角.xyoB2(三)角的位置:1.象限角B1xyo第一象限第二象限第三象限第四象限xyo2.非象限角(界限角、轴线角)当角的终边不落在象限内,这样的角还是象限角吗?终边落在x轴和y轴上的角xyo否1.在直角坐标系中,作出下列各角(1)30°(2)480°(3)-60°(4)90°指出它们是第几象限角30°是第一象限角480°是第二象限角-60°是第四象限角90°不是象限角2.在同一直角坐标系内作出30°、390°、-330°、750°,观察它们终边的关系与30°终边相同的角的集合{β︱β=30°+k·360°,k∈Z}390°=30°+___-330°=30°+___1·360°(-1)·360°750°=30°+___2·360°归纳:终边相同的角的表示方法一般地,所有与角α终边相同的角,连同角α在内,可构成一个集合S={β︱β=α+k·360°,k∈Z}(四)角的关系:即任何一个与角α终边相同的角,都可以表示成角α与周角的整数倍的和.(4)终边相同的角不一定相等,但相等的角,终边一定相同,终边相同的角有无数多个,它们相差360°的整数倍.注意以下四点:Zk(1)(2)是任意角;0360k0360k0360k(3)与之间是“+”号,如-30°,应看成+(-30°)1.与-496°终边相同的角是;它是第象限的角;它们中最小正角是_____-496°+k·360°(k∈Z)三224°例2.写出与60º角终边相同的角的集合S,并把S中适合不等式-360º≤β<720º的元素β写出来.解S={β∣β=60°+k·360°,k∈Z}.S中适合-360°≤β<720°的元素是:60º-1×360°=-300º,60º+0×360°=60º,60º+1×360°=420º.例1终边在y轴正半轴上角的集合{β︱β=900+k·360°,k∈Z}终边在y轴负半轴上角的集合{β︱β=2700+k·360°,k∈Z}或{β︱β=-900+k·360°,k∈Z}或{β︱β=-2700+k·360°,k∈Z}终边在y轴上角的集合为{β︱β=900+k·360°,k∈Z}{β︱β=2700+k·360°,k∈Z}∪写出与-45º角终边相同的角的集合S,并把S中适合不等式-720º≤β<360º的元素β写出来.S={β∣β=-45º+k·360°,k∈Z}.S中适合-720º≤β<360º的元素是:-405º-45º315º解模仿一下吧2.下列命题中正确的是()A.终边在y轴上的角是直角B.第二象限角一定是钝角C.第四象限角一定是负角D.若β=α+k·360°(k∈Z),则α与β终边相同D能力提升·角α的终边经过P(-3,0),则角α()A.是第三象限角B.是第二象限角C.既是第二象限角又是第三象限角D.不属于任何象限D·已知A={第一象限的角},B={锐角},C={小于90º的角},则下列关系式正确的是()A.A=B=CB.B∪C=AC.A∩C=BD.B∪C=CD·若α是锐角,则k·180º+α,(k∈Z)所在的象限是()A.第一象限B.第一、二象限C.第一、三象限D.第一、四象限C角的概念角的大小角的位置角的关系正角负角零角象限角轴线角终边相同角1.掌握终边相同的角的表示方法及判定2.注意:00到900的角;00~3600的角;第一象限角;锐角;小于900的角的区别
本文标题:(课件)1.1任意角和弧度制-修改-2
链接地址:https://www.777doc.com/doc-3462732 .html