您好,欢迎访问三七文档
UniformAccelerationExpansionsforMarkovChainswithTime-VaryingRates1WilliamA.MasseyBellLaboratories,Room2C-320MurrayHill,NJ07974-0636will@research.bell-labs.comWardWhittAT&TLaboratories,RoomA117,180ParkAvenue,Building103,FlorhamPark,NJ07932-0971wow@research.att.comDecember10,1997AbstractWestudyuniformacceleration(UA)expansionsof nite-statecontinuous-timeMarkovchainswithtime-varyingtransitionrates.TheUAexpansionscanbeusedtojustify,evaluate,andre nethepointwisestationaryapproximation,whichisthesteady-statedistributionassociatedwiththetime-dependentgeneratoratthetimeofinterest.WeobtainUAapproximationsfromtheseUAasymptoticexpansions.Wederiveatime-varyinganalogtotheuniformizationrepresentationoftransitionproba-bilitiesforchainswithconstanttransitionrates,andapplyittoestablishasymptoticresultsrelatedtotheUAasymptoticexpansion.Theseasymptoticresultscanserveasappropriatetime-varyinganalogstothenotionsofstationarydistributionsandlimitingdistributions.WeillustratetheUAapproximationsbydoinganumericalexampleforthetime-varyingErlanglossmodel.1AcceptedforpublicationintheAnnalsofAppliedProbability.AMS1991subjectclassi cations.60J27,60K30.Keywordsandphrases:Time-inhomogeneousMarkovchains,time-dependentbehavior,nonstationaryqueueingmodels,pointwisestationaryapproximation,eigenvaluebounds,nonnegativematrices,asymptoticexpansions,Poisson’sequation,Erlanglossmodel.11IntroductionInmanyappliedsettings,suchaswithqueueingsystems,physicalrealityindicatesthatitisappropriatetousenonstationarymodels.Forexample,arrivalratesinservicesystemstypicallyvarysubstantiallybytimeofday;e.g.,seep.259ofHall[7].However,iftherateofchangeissu cientlyslow,thenitisnaturaltoapproximatethetime-dependentdistributionatanytimetbythesteady-statedistributionofthemodelwithtransitioncharacteristicsatthattimet.Inparticular,foranonstationarycontinuous-timeMarkovchain(CTMC)withtime-dependentgeneratorfA(t):t 0g,wewouldapproximatethetime-dependentprobabilityvectorp(t)attimetbythesteady-stateprobabilityvector (t)associatedwithA(t),obtainedbysolving (t)A(t)=0and (t)1T=1,withtheusualregularityconditionsguaranteeingauniquesolution.(Weregardvectorsasrowvectors,sothat1Tisacolumnvectorof1’swithTthematrixtranspose.)Somevariantoftheapproximationprocedurejustdescribedisroutinelyusedintheperformanceanalysisoftelecommunicationssystemsandinmanyotherappliedsettings.Ithasbeenstudiedandcalledthepointwisestationaryapproximation(PSA)byGreenandKolesar[6],Whitt[26]andEick,MasseyandWhitt[4].Forexample,Whitt[26]provedthatPSAisasymptoticallycorrectforMt=Mt=squeuesandmoregeneraltime-dependentbirth-and-deathprocessesasthebirthanddeathratesincrease,whichisequivalent(byachangeoftimescale)tohavingtherateschangemoreslowly.InthispaperweproposeawaytoquantitativelyevaluatePSAanddevelopre nementstoit(withouthavingtosolvefortheactualtime-dependentdistribution).Inparticular,wefocusonaclassofasymptoticapproximationscalleduniformacceleration(UA)asymptoticexpansionsforCTMCs.TheUAframeworkprovidesanaturalwaytojustify,evaluateandre nethePSAbecausethePSAisthe rsttermoftheUAexpansion.Whenthenextfewtermsarerelativelysmall,wecanbecon dentthatthePSAisagoodapproximation,butwhentheyarenot,thenthePSAcanberegardedasunreliable.The rstfewtermsoftheUAexpansionprovideaconvenientcheckonPSAbecausetheyareessentiallynomoredi culttocomputethanPSAitself.Inparticular,supposethatA(t)isthetime-dependentgeneratorforanonstationaryCTMC.ThentheUAapproximationofordernforthedistributionattimetisp(t) nXk=0 (k)(t);(1.1)where,foreachk,thevector (k)isasolutionofPoisson’sequation (k)(t)A(t)=y(k)(t);(1.2)withy(0)(t)=0; (0)(t)1T=1;(1.3)y(k)(t)=ddt (k 1)(t)and (k)(t)1T=0fork 1:(1.4)From(1.2)and(1.3),weseethat (0)(t)isindeedthestationarydistributionassociatedwithA(t),sothat (0)(t)isthePSA.However,tocalculatethehigher-orderterms (k)(t)2fork 1,weneedthederivativesof (k)(t)fork 0,butthesederivativescanalsobecalculatedbysolvingPoissonequations.Forexample,bydi erentiating(1.2)fork=0,weseethatd (0)dt(t)A(t)= (0)(t)dAdt(t):(1.5)Similarly,d (1)dt(t)A(t)=d2dt2 (0)(t) (1)(t)ddtA(t)(1.6)andd2 (0)dt2(t)A(t)= 2d (0)dt(t)dAdt(t) (0)(t)d2Adt2(t):(1.7)Moregenerally(byinduction),dj (n)dtj(t)A(t)=dj+1 (n 1)dtj+1(t) j 1Xk=0jk!dk (n)dtk(t)dj kAdtj k(t);(1.8)where ( i)(t) 0.Inorderforthe (n)vectorstohavetherequiredderivativesandfortheUAapproximationtobewellde ned,weassumethatthegeneratorpossessesalltherequiredderivativesatt.Weremarkthatthederivativesof (0)(t)arealsoofinterestinthesensitivityanalysisofthestationarydistributiontochangesinthegeneratorA(t),nowregardedasthegen-eratorforastationaryCTMCsubjecttopossiblechangeinthetransitionintensities.ItisknownthatsuchsensitivityanalysiscanbeperformedbysolvingPoisson’sequation;e.g.,seeSchweitzer[23].Thus,tocalculatethe rstn+1terms (0)(t); (1)(t);:::; (n)(t)intheUAapproximation(1.1),weneedtosolvePoisson’sequation(n+1)(n+2)=2timeswithdi erent(known)righthandsides.In(1.1)wearenotinterestedinlargen,becausethefullseriesisnotaconvergentseries.Itisinsteadanasymptoticexpansion;see(3.12)below.Indeed,higher-ordertermsarelikelyt
本文标题:Uniform acceleration expansions for Markov chains
链接地址:https://www.777doc.com/doc-3470839 .html