您好,欢迎访问三七文档
当前位置:首页 > 建筑/环境 > 工程监理 > 清华微积分(高等数学)课件第十五讲 不定积分(三)
2020/2/41作业P150习题5.61(5)(7)(15).2(3).3(1).4(5).5(1)(3).P155综合题23.24.30.48.63.复习:P124—155预习:P158—1662020/2/42第十五讲不定积分(三)一、有理函数的积分二、简单无理式的积分2020/2/43)()()(xQxPxRmnmmmmmnnnnnbxbxbxbxQaxaxaxaxP11101110)()(其中真分式多项式代数有理函数12111223xxxxxx例如:一、有理函数的积分(一)代数有理函数的积分假分式时当真分式时当,;,mnmn2020/2/44简分式的和真分式可分解为四类最axA)1(naxA)()2(qpxxCBx2)3(nqpxxCBx)()4(2caxAdxaxAln)1(caxnAdxaxAnn1))(1()()2(四类最简分式的积分2020/2/45dxqpxxCBppxBdxqpxxCBx221212)2()3(qpxxdxCBpqpxxB2222ln21)()(22ln2142222ppqxdxCBpqpxxB2020/2/46dxqpxxCBppxBdxqpxxCBxnn)()2()()4(22121212)(1)1(2nqpxxnBnppqxdxCBp)]()[(2242222020/2/47:)04()()()(221110诸因式之积与与形如都可以分解为一个常数任意一个实系数多项式qpqpxxaxbxbxbxbxQlkmmmmm如何将真分式分解为最简分式之和?定理1:rslrrllkskkmqxpxqxpxqxpxaxaxaxbxQ)()()()()()()(222211221021212020/2/48:,,)()(如下分解规则之和唯一地分解为最简分式则它可以是一个真分式设xQxPmn定理2:)()1(axA一次单因式对应一项kkaxAaxAaxAkk)()()()2(221项重因式对应一次2020/2/49qpxxCBx2)3(二次单因式对应一项kkkqpxxCxBqpxxCxBqpxxCxBkk)()()()4(22222211项重因式对应二次2020/2/410分解为最简分式的和将例435]1[23xxx将分母分解因式)1(223)2)(1(43xxxx将真分式分解)2(223)2(21435xCxBxAxxx[解]CBA,,)3(用比较系数法确定常数)24()4()()1()2)(1()2(522CBAxCBAxBAxCxxBxAx2020/2/411524140CBACBABA1,32,32CBA223)2(121321132435xxxxxxdxxxx435232)2(232132xdxxdxxdxCxxx2112ln322020/2/412dxxxxxxxxI1221]2[23453求积分例将分母分解因式)1(222345)1)(1(122xxxxxxx将真分式分解)2(22223453)1(111221xEDxxCBxxAxxxxxxx[解]用比较系数法确定常数)3()()()2()()()1)(()1)(1)(()1(12342223ECAxEDCBxDCBAxBCxBAxEDxxxCBxxAxx2020/2/41323,21,43,41,41EDCBA110210ECAEDCBDCBABCBAdxxxdxxxdxxI222)1(321134111411431)1(811ln41222xdxxxdx22222)1(23)1()1(41xdxxxd2020/2/414xxxarctan43)1ln(811ln4121431)1(811ln41222xdxxxdxI22222)1(23)1()1(41xdxxxdCxxxx]arctan21121[23114122CxxxxI]11311[ln4122即2020/2/415Caxaaxxaaxdxaaxxaaxdxn)arctan1(212121)(22222222222)2,1(na[注意]计算最后一个积分时,利用了递推公式Cxxxxdxxxxdxarctan21121121121)1(222222020/2/416)3(7xxdxdxxxxx)3(33777dxxxxdx)3(3376)1(10xxdx)1(1011xxdx)1(10109xxdxx或遇到有理函数的积分要灵活处理2020/2/417dxxxR)cos,(sintx2tan令212sinttx2211costtxdttdx212dttR)(1有理函数万能代换(二)三角有理函数的积分代数有理函数的积分2020/2/418dxxIcos21]3[求积分例tx2tan令22113121cos2122ttxttdttdx212dttI2312Ct3arctan32[解]Cx)3tanarctan(3222020/2/419三角函数有理式积分的最常用的方法是用三角恒等式将问题化简nxdxmxcoscosnxdxmxsinsin:]1[例dxxnmxnm])cos()[cos(21dxxnmxnm])cos()[cos(21nxdxmxcossindxxnmxnm])sin()[sin(212020/2/420xxdxcossin1:2例2cos22cos2sin22xxxdxcxxxd|2tan1|ln2tan1)2tan1(xdx2sin:32例xxdx22cossin41dxxxxxxx)csc(sec41cossincossin41222222cxx)cot(tan412020/2/421dxxI2sin31]4[求积分例dxxxxI222tansec3secxxd2tan43)(tanCxtan32arctan63[解]2020/2/422dxxxIcos)sin2(1]5[求积分例dxxxxxIcos)sin2()cos(sin43122dxxxdxxxsin2cos31cossin231xxdxxdxdxsin2)sin2(31cos)(cos31cos32Cxxxxsin2ln31cosln31tansecln32[解一]Cxxxxsin2cosln31tansecln322020/2/423)sin1)(sin2()(sincos)sin2(cos22xxxddxxxxI)(sin1sinsin1sin2612131xdxxxCxxxsin1ln61sin1ln21sin2ln31Cxxxcos)sin2()sin1(ln312[解二]2020/2/424dxbaxxRn),()1(tbaxn令abtxndttandxn1dttR)(1二、简单无理式的积分代数有理函数的积分2020/2/425dxbaxbaxbaxxRknnn),,,,()2(21tbaxn令的最小公倍数为knnnn,,,21dttR)(1代数有理函数的积分2020/2/426dxdcxbaxxRn),()3(tdcxbaxn令dttR)(1代数有理函数的积分2020/2/427dxcbxaxxR),()4(2)04,0(2acbaduau221经配方只要求tauduautan22令tauduuasin22令tausec2020/2/428dxxxI1]5[3求积分例则令,66txtx11233ttxxdttdx56dxttI1628dttttt)111(62246Cxxxxx66636567arctan315171(6[解]Cttttt)arctan357(63572020/2/429dxxxI32)1)(1(1]6[求积分例先将积分化为dxxxxI111131111333ttxtxx令1211113333ttttxdtttdx232)1(6[解]2020/2/430dttttdttdttI1211113232232212122)()()(231)1(211lnttdttttdtdttttt13)12(211ln2Ctttt312arctan3)1(1ln2122311xxt其中,2020/2/43122)1(]7[xxxdxI求积分例22149)()1(xxdxI24923)(uudutusin23令21xu令tttdtcos)1(sincos232323[解]2020/2/432dttsin1132dttt2cossin132Ctt)cos1(tan32tu23249uCuu2492332Cxxx22232Cxx1232三角形法2020/2/433等函数下列积分不能表示为初xkdxdxxkdxxdxxdxxxdxxxdxxdxxdxxdxex2222223sin1,sin1cos,sincos,sin,sin1,ln1,22020/2/434dxxfCxFdxxfxfxfdxxx)()()(,)(,)(2)1ln(111求且是它的反函数单调连续设练习2020/2/435以下题目不用笔算立即写出结果dxexx121.1dueudxxxar231)sin(.2duu3dxxx2.32ududxxxsin1.4udusin2020/2/436xxdx2costan.7duu21dxxxx1arcsin.8ududxxx2ln.6duu294.5xxdxudu2020/2/437dxxxlnln.9xxxlnlnlnlnxdxxexcossin.102sindueu
本文标题:清华微积分(高等数学)课件第十五讲 不定积分(三)
链接地址:https://www.777doc.com/doc-3480103 .html