您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 商业计划书 > 三角函数复习教案_整理
第1页共30页第1课三角函数的概念考试注意:理解任意角的概念、弧度的意义.能正确地进行弧度与角度的换算.掌握终边相同角的表示方法.掌握任意角的正弦、余弦、正切的意义.了解余切、正割、余割的定义.掌握三角函数的符号法则.知识典例:1.角α的终边在第一、三象限的角平分线上,角α的集合可写成.2.已知角α的余弦线是单位长度的有向线段,那么角α的终边()A.在x轴上B.在y轴上C.在直线y=x上D.在直线y=-x上.3.已知角α的终边过点p(-5,12),则cosα},tanα=.4.tan(-3)cot5cos8的符号为.5.若cosθtanθ>0,则θ是()A.第一象限角B.第二象限角C.第一、二象限角D.第二、三象限角【讲练平台】例1已知角的终边上一点P(-3,m),且sinθ=24m,求cosθ与tanθ的值.分析已知角的终边上点的坐标,求角的三角函数值,应联想到运用三角函数的定义解题,由P的坐标可知,需求出m的值,从而应寻求m的方程.解由题意知r=3+m2,则sinθ=mr=m3+m2.又∵sinθ=24m,∴m3+m2=24m.∴m=0,m=±5.当m=0时,cosθ=-1,tanθ=0;当m=5时,cosθ=-64,tanθ=-153;当m=-5时,cosθ=-64,tanθ=153.点评已知一个角的终边上一点的坐标,求其三角函数值,往往运用定义法(三角函数的定义)解决.例2已知集合E={θ|cosθ<sinθ,0≤θ≤2π},F={θ|tanθ<sinθ},求集合E∩F.分析对于三角不等式,可运用三角函数线解之.解E={θ|π4<θ<5π4},F={θ|π2<θ<π,或3π2<θ<2π},∴E∩F={θ|π2<θ<π}.第2页共30页例3设θ是第二象限角,且满足|sinθ2|=-sinθ2,θ2是哪个象限的角?解∵θ是第二象限角,∴2kπ+π2<θ<2kπ+3π2,k∈Z.∴kπ+π4<θ2<kπ+3π4,k∈Z.∴θ2是第一象限或第三象限角.①又∵|sinθ2|=-sinθ2,∴sinθ2<0.∴θ2是第三、第四象限的角.②由①、②知,θ2是第三象限角.点评已知θ所在的象限,求θ2或2θ等所在的象限,要运用终边相同的角的表示法来表示,否则易出错.【知能集成】注意运用终边相同的角的表示方法表示有关象限角等;已知角的终边上一点的坐标,求三角函数值往往运用定义法;注意运用三角函数线解决有关三角不等式.【训练反馈】1.已知α是钝角,那么α2是()A.第一象限角B.第二象限角C.第一与第二象限角D.不小于直角的正角2.角α的终边过点P(-4k,3k)(k<0},则cosα的值是()A.35B.45C.-35D.-453.已知点P(sinα-cosα,tanα)在第一象限,则在[0,2π]内,α的取值范围是()A.(π2,3π4)∪(π,5π4)B.(π4,π2)∪(π,5π4)C.(π2,3π4)∪(5π4,3π2)D.(π4,π2)∪(3π4,π)4.若sinx=-35,cosx=45,则角2x的终边位置在()A.第一象限B.第二象限C.第三象限D.第四象限5.若4π<α<6π,且α与-2π3终边相同,则α=.6.角α终边在第三象限,则角2α终边在象限.7.已知|tanx|=-tanx,则角x的集合为.8.如果θ是第三象限角,则cos(sinθ)·sin(sinθ)的符号为什么?9.已知扇形AOB的周长是6cm,该扇形中心角是1弧度,求该扇形面积.第2课同角三角函数的关系及诱导公式第3页共30页【考点指津】掌握同角三角函数的基本关系式:sin2α+cos2α=1,sinαcosα=tanα,tanαcotα=1,掌握正弦、余弦的诱导公式.能运用化归思想(即将含有较多三角函数名称问题化成含有较少三角函数名称问题)解题.【知识在线】1.sin2150°+sin2135°+2sin210°+cos2225°的值是()A.14B.34C.114D.942.已知sin(π+α)=-35,则()A.cosα=45B.tanα=34C.cosα=-45D.sin(π-α)=353.已tanα=3,4sinα-2cosα5cosα+3sinα的值为.4.化简1+2sin(π-2)cos(π+2)=.5.已知θ是第三象限角,且sin4θ+cos4θ=59,那么sin2θ等于()A.223B.-223C.23D.-23【讲练平台】例1化简sin(2π-α)tan(π+α)cot(-α-π)cos(π-α)tan(3π-α).分析式中含有较多角和较多三角函数名称,若能减少它们的个数,则式子可望简化.解原式=(-sinα)tanα[-cot(α+π)](-cosα)tan(π-α)=(-sinα)tanα(-cotα)(-cosα)(-tanα)=sinα·cosαsinαcosα=1.点评将不同角化同角,不同名的三角函数化成同名的三角函数是三角变换中常用的方法.例2若sinθcosθ=18,θ∈(π4,π2),求cosθ-sinθ的值.分析已知式为sinθ、cosθ的二次式,欲求式为sinθ、cosθ的一次式,为了运用条件,须将cosθ-sinθ进行平方.解(cosθ-sinθ)2=cos2θ+sin2θ-2sinθcosθ=1-14=34.∵θ∈(π4,π2),∴cosθ<sinθ.∴cosθ-sinθ=-32.变式1条件同例,求cosθ+sinθ的值.变式2已知cosθ-sinθ=-32,求sinθcosθ,sinθ+cosθ的值.第4页共30页点评sinθcosθ,cosθ+sinθ,cosθ-sinθ三者关系紧密,由其中之一,可求其余之二.例3已知tanθ=3.求cos2θ+sinθcosθ的值.分析因为cos2θ+sinθcosθ是关于sinθ、cosθ的二次齐次式,所以可转化成tanθ的式子.解原式=cos2θ+sinθcosθ=cos2θ+sinθcosθcos2θ+sin2θ=1+tanθ1+tan2θ=25.点评1.关于cosθ、sinθ的齐次式可转化成tanθ的式子.2.注意1的作用:1=sin2θ+cos2θ等.【知能集成】1.在三角式的化简,求值等三角恒等变换中,要注意将不同名的三角函数化成同名的三角函数.2.注意1的作用:如1=sin2θ+cos2θ.3.要注意观察式子特征,关于sinθ、cosθ的齐次式可转化成关于tanθ的式子.4.运用诱导公式,可将任意角的问题转化成锐角的问题.【训练反馈】1.sin600°的值是()A.12B.-12C.32D.-322.sin(π4+α)sin(π4-α)的化简结果为()A.cos2αB.12cos2αC.sin2αD.12sin2α3.已知sinx+cosx=15,x∈[0,π],则tanx的值是()A.-34B.-43C.±43D.-34或-434.已知tanα=-13,则12sinαcosα+cos2α=.5.1-2sin10°cos10°cos10°-1-cos2170°的值为.6.证明1+2sinαcosαcos2α-sin2α=1+tanα1-tanα.7.已知2sinθ+cosθsinθ-3cosθ=-5,求3cos2θ+4sin2θ的值.8.已知锐角α、β、γ满足sinα+sinγ=sinβ,cosα-cosγ=cosβ,求α-β的值.第3课两角和与两角差的三角函数(一)第5页共30页【考点指津】掌握两角和与两角差的正弦、余弦、正切公式,掌握二倍角的正弦、余弦、正切公式,能运用化归思想(将不同角化成同角等)解题.【知识在线】1.cos105°的值为()A.6+24B.6-24C.2-64D.-6-242.对于任何α、β∈(0,π2),sin(α+β)与sinα+sinβ的大小关系是()A.sin(α+β)>sinα+sinβB.sin(α+β)<sinα+sinβC.sin(α+β)=sinα+sinβD.要以α、β的具体值而定3.已知π<θ<3π2,sin2θ=a,则sinθ+cosθ等于()A.a+1B.-a+1C.a2+1D.±a2+14.已知tanα=13,tanβ=13,则cot(α+2β)=.5.已知tanx=12,则cos2x=.【讲练平台】例1已知sinα-sinβ=-13,cosα-cosβ=12,求cos(α-β)的值.分析由于cos(α-β)=cosαcosβ+sinαsinβ的右边是关于sinα、cosα、sinβ、cosβ的二次式,而已知条件是关于sinα、sinβ、cosα、cosβ的一次式,所以将已知式两边平方.解∵sinα-sinβ=-13,①cosα-cosβ=12,②①2+②2,得2-2cos(α-β)=1336.∴cos(α-β)=7259.点评审题中要善于寻找已知和欲求的差异,设法消除差异.例2求2cos10°-sin20°cos20°的值.分析式中含有两个角,故需先化简.注意到10°=30°-20°,由于30°的三角函数值已知,则可将两个角化成一个角.解∵10°=30°-20°,∴原式=2cos(30°-20°)-sin20°cos20°=2(cos30°cos20°+sin30°sin20°)-sin20°cos20°=3cos30°cos20°=3.点评化异角为同角,是三角变换中常用的方法.例3已知:sin(α+β)=-2sinβ.求证:tanα=3tan(α+β).分析已知式中含有角2α+β和β,而欲求式中含有角α和α+β,所以要设法将已知式中的角转化成欲求式中的角.第6页共30页解∵2α+β=(α+β)+α,β=(α+β)-α,∴sin[(α+β)+α]=-2sin[(α+β)-α].∴sin(α+β)cosα+cos(α+β)sinα=-2sin(α+β)cosα+2cos(α+β)sinα.若cos(α+β)≠0,cosα≠0,则3tan(α+β)=tanα.点评审题中要仔细分析角与角之间的关系,善于运用整体思想解题,此题中将α+β看成一个整体【知能集成】审题中,要善于观察已知式和欲求式的差异,注意角之间的关系;整体思想是三角变换中常用的思想.【训练反馈】1.已知0<α<π2<β<π,sinα=35,cos(α+β)=-45,则sinβ等于()A.0B.0或2425C.2425D.0或-24252.sin7°+cos15°sin8°cos7°-sin15°sin8°的值等于()A.2+3B.2+32C.2-3D.2-323.△ABC中,3sinA+4cosB=6,4sinB+3cosA=1,则∠C的大小为()A.π6B.5π6C.π6或5π6D.π3或2π34.若α是锐角,且sin(α-π6)=13,则cosα的值是.5.cosπ7cos2π7cos3π7=.6.已知tanθ=12,tanφ=13,且θ、φ都是锐角.求证:θ+φ=45°.7.已知cos(α-β)=-45,cos(α+β)=45,且(α-β)∈(π2,π),α+β∈(3π2,2π),求cos2α、cos2β的值.8.已知sin(α+β)=12,且sin(π+α-β)=13,求tanαtanβ.第4课两角和与两角差的三角函数(二)【考点指津】掌握两角和与两角差的正弦、余弦、正切公式;掌握二倍角的正弦、余弦、正切公式;能灵活运用和角、差角、倍角公式解题.【知识在线】求下列各式的值第7页共30页1.cos200°cos80°+cos110°cos10°=.2.12(cos15°+3sin15°)=.3.化简1+2cos2θ-cos2θ=.4.cos(20°+x)cos(25°-x)-cos(70°-x)sin(25°-x)=.5.11-tanθ-11+tanθ=.【讲练平台】例1求下列各式的值(1)tan10°+tan50°+3tan10°tan50°;(2)(3tan12°-3)csc12°4cos212°-2.(1)解原式=tan(10°+50°)(1-tan10°tan50°)+3tan10°tan50°=3.(2)分析式中含有
本文标题:三角函数复习教案_整理
链接地址:https://www.777doc.com/doc-3516323 .html