您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 项目/工程管理 > 高等数学-习题答案-方明亮-第二章
1第二章导数与微分习题2-11.解:当自变量从x变到1x时,y相应地从()=8fxx变到11()=8fxx,所以导数111111()()8()limlim8xxxxfxfxxxyxxxx.2.解:由导数的定义可知022020()()()lim()()()lim2lim2hhhfxhfxfxhaxhbxhcaxbxchaxhhbhaxbh。3.解:0022()22()limlimxxxxxsinsincosxxcosxcosxxx0022limlim22xxxsinxx-sinsinxx4.解:(1)不能,(1)与()fx在0x的取值无关,当然也就与()fx在0x是否连续无关,故是0()fx存在的必要条件而非充分条件.(2)可以,与导数的定义等价.(3)可以,与导数的定义等价.5.解:(1)45x;(2)3212x;(3)157227x;(4)11ln3x;(5)5616x;(6)22xe.6.解:物体在t时刻的运动速度为:2()()3()VtSTtm/s,故物体在2ts时的速度为:22()3212()tVtm/s.7.证明:由导数定义,知:00()(0)()(0)(0)limlim0xxfxffxffxx00()(0)()(0)limlim(0)0txttftfftfftt2所以,(0)0f。8.解:2424yxx,y,故在点(2,4)的切线平行于直线45yx;同理在点39,24的切线垂直于直线2650xy.9.解:过点(11)(39),,,的直线的斜率为:91431K,而2()2yxx,令24x,得:2x,所以该抛物线上过点(2,4)的切线平行于此割线.10.解:(1)连续,但因为3230001/f(h)f()hhhh因而2300(0)(0)1limlim/hhfhfhh,即导数为无穷大。(2)21000xsin,xyx,x,而20001limlim0xxxyxsinyx,所以函数在0x处连续而201lim00xxsinxx,所以函数在0x点处可导.11.解:要使函数()fx在1x处连续且可导,则应满足011(1)(1)lim()lim()(1),limxxxfxffxfxfx存在,11lim()lim()xxfxaxbab,11()limxxxlimfxeeabe又00(1)(1)(1)limlimxxfxfaxbexx100(1)(1)limlimxxxfxfeeexx,要使0(1)(1)limxfxfx存在,则00(1)limlim()xxaxbeabeaexx,00abeae,bae。12.解:因为200()(0)(0)=limlim0xxfxfxfxx300()(0)(0)=limlim1xxfxfxfxx(0)(0)1ff,所以(0)f不存在.13.解:当0x时,3()fxx是初等函数,所以2()3fxx;同理,当0x时2()3fxx;当0x时300(0)=lim0xxfx,300(0)=lim0xxfx,故(0)0f,所以223,0()0,030xxfxxxx或223,0()3,0xxfxxx.14.(1)证明:设()()fxfx,且()fx可导,则由导数定义000()()[()]()()limlim()()lim()hhhfxhfxfxhfxfxhhfxhfxfxh即结论可证。(2)略.15.解:当(0)0f时,不妨设(0)0f,则在0x的某一邻域中有()0fx,故|()|()fxfx,所以|()|fx在0x处也可导;当(0)0f时,由于|()||(0)|()(0)sgn00fxffxfxxx,其中100010,xsgnx,x,x,分别在0x处计算左、右极限,得在0x处的左导数为|(0)|f,右导数为|(0)|f,所以|()|fx在0x处也可导的充分必要条件(0)0f。16.略17.略习题2-21.解:(1)6sin2x;(2)12cos(31)t;(3)368sin2xex;4(4)45(1)x;(5)412xe;(6)3221(1)x;(7)21ln(ln)xxx;(8)22(1)(522)xxx;(9)2(3sinsincos)xxexxxxx;(10)4222(94)ln32(3ln)xxxxxxxx.2.解:(1)222()()1()cosxcosxsinxsinxcosxcotxcscxsinxsinxsinx(2)21()cosxcscxcscxcotxsinxsinx。3.解:(1)221111()11arccosxsinycosyxcosy;(2)同理可证。4.解:(1)23ysinxcosx,4522xy;(2)同理可求10(2)3f.5.解:当0y时,1202xx,则12x,所以124xy,故切线方程为420,420xyxy.6.解:(1)25242[(23)]5(23)(23)yxxx24245(23)42023xxx(x);(2)2222((52))(52)(52)4(52)ysinxcoxxxcosxx;(3)223213212()(321)xxxxyeexx2321(62)xxex;(4)22(sin())2cosyxxx;(5)2(cos)2cos(sin)2sincosyxxxxx;5(6)1222[()]yax122222221()()2xaxaxax;(7)221[arctan()]()1()1xxxxxeyeeee;(8)2[(arccos)]2arccos(arccos)yxxx22arccos1xx;(9)1()()ylnsinxsinxsinxcotx;(10)32333(1)3((1))(1)(1)axxylogxxlnaxlna.7.解:(1)211(arccos(12))(12)(1)1(12)yxxxxx;(2)221111arcsin111yxxxxx;(3)1ln1lnxyx22(1ln)(1ln)(1ln)(1ln)2(1ln)(1ln)xxxxxxx;(4)22[ln()]yxax22222211()xaxxaxax;(5)(sincos)(sin)cossin(cos)nnnyxnxxnxxnx=1sincos(1)nnxnx;(6)121sin211sin21sin22cos21sin221sin21sin2|cos2|(1sin2)xxxxyxxxxx;(7)arctanarctan(arctan)2(1)xxeyexxx;6(8)11(lnln(ln))(lnln)lnlnln[ln(ln)]yxxxxxx;(9)222221111(11)11xxyxxxxx;(10)2111cottantan222211tan22xxyarcx222111sec222113cos1tan222xxxx.8.解:当0x时,2()xcosxsinxfxx;当0x时1()1fxcosxxsinxx;在分段点0x,由导数定义知0()(0)(0)lim00xfxffx00()(0)(1)(0)limlim00xxfxflnxxcosxfxx所以,(0)0f在0x也可导,故()fx在(),上都可导。9.解:(1)cosln(sin)coslnsinxxxxyee,2coslnsincossinlnsinsinxxyexxx2coscos(sin)sinlnsinsinxxxxxx;10.解:(1)32(())sin()sin3fxxx;(2)33(())sin()cosfxxx;(3)33332((()))(sin)cos()3cosfxxxxxx.11.解:(1)(1)(1)((cos))(cos)((cos))(cos)(cos)sinnnnfxnfxfxnfxfxx;(2)11(cos[()])cos[()](cos[()])cos[()]sin[()]()nnnfxnfxfxnfxfxfx.习题2-31.解:(1)35353,9xxyeye;(2)sincos,[(cossin)]2costtttyetetyettet;7(3)221(sinln)2sincoslnsinyxxxxxxx22212sin2sin2sincoslnsin2cos2lnxxyxxxxxxxxx;(4)2(tan)secyxx,22(sec)2sec(sec)2sectanyxxxxx;(5)22231(ln(4)14(4)xyxxxxx,22222311114444;(4)xxyxxxxxxxx(6)2[(1)arctan]yxx2212arctan(1)2arctan11xxxxxx.22(2arctan1)2arctan1xyxxxx2.解:因为33(4)()6,()0xx,运用莱布尼茨公式得(5)(5)3(4)33543()5()()()()123xxxyexexex32(156060)xxxxe(5)(0)60y.3.解:(20)022(20)12(19)22(18)202020()2()2()xxxyCxeCxeCe20221921822022201922022222(2095)2!xxxxexexeexx。4.解:(1)22231d1dd()dddd()dyyyxyyxyyyyyx;(2)33322355dd()()d3()3()ddddd()()yyyyxyyyyyyyxxyyyy。5.证明:22222xyxx;8222222(
本文标题:高等数学-习题答案-方明亮-第二章
链接地址:https://www.777doc.com/doc-3527572 .html