您好,欢迎访问三七文档
当前位置:首页 > 幼儿/小学教育 > 小学教育 > 多边形的内角与外角和精选习题
多边形的内角与外角和一.选择题(共13小题)1.(2006•柳州)把一张形状是多边形的纸片剪去其中某一个角,剩下的部分是一个四边形,则这张纸片原来的形状不可能是()A.六边形B.五边形C.四边形D.三角形2.如图,四边形ABCD的对角线AC⊥BD,垂足为O,且AC=12,BD=9,则四边形ABCD的面积是()A.60B.54C.30D.273.以线段a=7,b=8,c=9,d=11为边作四边形,可作()A.一个B.2个C.3个D.无数个4.如图所示,一个大长方形被两条线段AB、CD分成四个小长方形.如果其中图形Ⅰ、Ⅱ、Ⅲ的面积分别为8、6、5,那么阴影部分的面积为()A.B.C.D.5.若n边形恰好有n条对角线,则n为()A.4B.5C.6D.76.过一个多边形的顶点可作5条对角线,则这个多边形是()A.六边形B.七边形C.八边形D.九边形7.(2012•深圳)如图所示,一个60°角的三角形纸片,剪去这个60°角后,得到一个四边形,则∠1+∠2的度数为()A.120°B.180°C.240°D.300°8.(2010•房山区一模)如果正n边形的一个外角与和它相邻的内角之比是1:3,那么n的值是()A.5B.6C.7D.89.内角的度数为整数的正n边形的个数是()A.24B.22C.20D.18菁优网©2010-2014菁优网10.如图,△ABC中,∠A=45°,点D、E分别在AB、AC上,则∠1+∠2的大小为()A.225°B.135°C.180°D.315°11.若一个多边形的内角和与外角和的度数比为4:1,则此多边形共有对角线()A.35条B.40条C.10条D.50条12.一个多边形的内角和是900°,这个多边形的边数是()A.4B.5C.6D.713.若一个多边形除了一个内角外,其余各内角之和是2570°,则这个角是()A.90°B.15°C.120°D.130°二.填空题(共11小题)14.(1)若将n边形内部任意取一点P,将P与各顶点连接起来,则可将多边形分割成_________个三角形.(2)若点P取在多边形的一条边上(不是顶点),在将P与n边形各顶点连接起来,则可将多边形分割成_________个三角形.15.若多边形不相邻顶点连线称为多边形的对角线,则五边形共有_________条对角线.16.过m边形的一个顶点有4条对角线,n边形没有对角线,p边形有p条对角线,则(m﹣p)n=_________.17.(2009•浔阳区模拟)如图,在△ABC中,E、F分别是AB、AC上的两点,∠1+∠2=225°,则∠A=_________度.18.(2004•连云港)某科技小组制作了一个机器人,它能根据指令要求进行行走和旋转.某一指令规定:机器人先向前行走1米,然后左转45°,若机器人反复执行这一指令,则从出发到第一次回到原处,机器人共走了_________米.菁优网©2010-2014菁优网19.小新从A点出发前进10m,向右转36°,再前进10m,又向右转36°,…,这样一直走下去,他第一次回到出发点A时,一共走了_________m.20.如图,在△ABC,∠A=∠B=40°,AB的一条垂线将△ABC分成一个三角形和一个四边形,则这个四边形中最大角的度数是_________.21.已知:BD、CE是△ABC的高,直线BD、CE相交,所成的角中有一个为70°,则∠BAC=_________.22.如图,已知AB∥CD,∠θ=46°,∠D=∠C,试推断∠B的度数为_________.23.如图:四边形ABCD中,∠α、∠β分别是∠B、∠D的_________.24.两个多边形的边数之比为1:2,内角和度数之比为1:3,这两个多边形分别是_________边形和_________边形.三.解答题(共6小题)25.如图,在四边形ABCD中,∠B=∠D=90°,∠AEC=∠BAD,则AE与DC的位置有什么关系?并说明理由.26.五边形ABCDE中,∠A为135°,AE⊥ED,AB∥CD,∠B=∠D,试求∠C的度数.27.折一折,想一想,如图所示,在△ABC中,将纸片一角折叠,使点C落在△ABC内一点C′上,若∠1=40°,∠2=30°.菁优网©2010-2014菁优网(1)求∠C的度数;(2)试通过第(1)问,直接写出∠1、∠2、∠C三者之间的关系.28.在一个凸n边形中.(1)当它的内角和度数等于外角和度数时,求n是多少?(2)它的对角线条数可以是14条吗?若可以求出n值,若不可以请说明理由.29.(2006•柳州)小明和小亮分别利用图①、②的不同方法求出了五边形的内角和都是540度.请你考虑在图③中再用另外一种方法求五边形的内角和.并写出求解过程.30.(2003•宁夏)将一个正六边形的纸片对折,并完全重合.那么得到的图形是几边形?它的内角和(按一层计算)是多少度?菁优网©2010-2014菁优网多边形的内角与外角和参考答案与试题解析一.选择题(共13小题)1.(2006•柳州)把一张形状是多边形的纸片剪去其中某一个角,剩下的部分是一个四边形,则这张纸片原来的形状不可能是()A.六边形B.五边形C.四边形D.三角形考点:多边形.1184454专题:压轴题.分析:一个n边形剪去一个角后,剩下的形状可能是n边形或(n+1)边形或(n﹣1)边形.解答:解:当剪去一个角后,剩下的部分是一个四边形,则这张纸片原来的形状可能是四边形或三角形或五边形,不可能是六边形.故选A.点评:剪去一个角的方法可能有三种:经过两个相邻顶点,则少了一条边;经过一个顶点和一边,边数不变;经过两条邻边,边数增加一条.2.如图,四边形ABCD的对角线AC⊥BD,垂足为O,且AC=12,BD=9,则四边形ABCD的面积是()A.60B.54C.30D.27考点:多边形.1184454专题:计算题.分析:由四边形ABCD的面积是四个小三角形的面积和可得到:S四边形ABCD=S△AOD+S△COD+S△BOC+S△AOB=OA•OD+OC•OD+OC•OB+OB•OA,再利用乘法的分配律求解即可.解答:解:∵AC⊥BD,AC=12,BD=9,∴S四边形ABCD=S△AOD+S△COD+S△BOC+S△AOB=OA•OD+OC•OD+OC•OB+OB•OA=OD(OA+OC)+OB(OA+OC)=OD•AC+OB•AC=AC•(OD+OC)=AC•BD=×12×9=54.故选B.点评:此题考查了对角线互相垂直的四边形的面积是对角线积的一半的性质.此题比较简单,应掌握此结论的证法.3.以线段a=7,b=8,c=9,d=11为边作四边形,可作()A.一个B.2个C.3个D.无数个考点:多边形.1184454菁优网©2010-2014菁优网分析:根据四边形具有不稳定性,可知四条线段组成的四边形可有无数种变化.解答:解:四条线段组成的四边形可有无数种变化.故选D.点评:本题考查四边形的不稳定性.4.如图所示,一个大长方形被两条线段AB、CD分成四个小长方形.如果其中图形Ⅰ、Ⅱ、Ⅲ的面积分别为8、6、5,那么阴影部分的面积为()A.B.C.D.考点:多边形;三角形的面积.1184454专题:探究型.分析:设大长方形的长为a,宽为b,Ⅰ的长为x,宽为y,则Ⅱ的长为a﹣x,宽为y,Ⅲ的长为a﹣x,宽为b﹣y,阴影部分的长为x,宽为b﹣y,设有阴影的矩形面积为z,再根据等高不同底利用面积的比求解即可.解答:解:∵图形Ⅰ、Ⅱ、Ⅲ的面积分别为8、6、5,∴===,∴===,∴=,z=∴S阴影=z=×=.故选C.点评:本题考查的是长方形及三角形的面积公式,解答此题的关键是熟知等高不同底的多边形底边的比等于其面积的比.5.若n边形恰好有n条对角线,则n为()A.4B.5C.6D.7考点:多边形的对角线.1184454分析:根据多边形的边数与对角线的条数的关系列方程得出多边形的边数.解答:解:依题意有=n,n(n﹣5)=0,解得n=0(不合题意舍去)或n=5.故选:B.点评:本题考查了熟记多边形的内角和公式与对角线公式.根据多边形的边数与对角线的条数的关系式得出方程是解决此类问题的关键.6.过一个多边形的顶点可作5条对角线,则这个多边形是()A.六边形B.七边形C.八边形D.九边形菁优网©2010-2014菁优网考点:多边形的对角线.1184454分析:根据从多边形的一个顶点可以作对角线的条数公式(n﹣3)求出边数即可得解.解答:解:∵多边形从一个顶点出发可引出5条对角线,∴n﹣3=5,解得n=8.故选:C.点评:本题考查了多边形的对角线的公式,牢记公式是解题的关键.7.(2012•深圳)如图所示,一个60°角的三角形纸片,剪去这个60°角后,得到一个四边形,则∠1+∠2的度数为()A.120°B.180°C.240°D.300°考点:多边形内角与外角;三角形内角和定理.1184454分析:三角形纸片中,剪去其中一个60°的角后变成四边形,则根据多边形的内角和等于360度即可求得∠1+∠2的度数.解答:解:根据三角形的内角和定理得:四边形除去∠1,∠2后的两角的度数为180°﹣60°=120°,则根据四边形的内角和定理得:∠1+∠2=360°﹣120°=240°.故选C.点评:主要考查了三角形及四边形的内角和是360度的实际运用与三角形内角和180度之间的关系.8.(2010•房山区一模)如果正n边形的一个外角与和它相邻的内角之比是1:3,那么n的值是()A.5B.6C.7D.8考点:多边形内角与外角.1184454分析:设内角为x°,则其内角为3x°,然后利用正多边形的内角与外角互补列出方程求得x的值,然后求边数即可.解答:解:设内角为x°,则其内角为3x°,则x+3x=180解得:x=45∵正n边形外角和为360°,∴n=360÷45=8故答案为8.点评:本题考查了正多边形的外角与内角的知识,熟练掌握正多边形的内角和和外角和定理是解决此类题目的关键.9.内角的度数为整数的正n边形的个数是()A.24B.22C.20D.18考点:多边形内角与外角.1184454分析:由于正n边形的内角和为(n﹣2)•180°,然后除以n即可得到正n边形的内角的度数,再利用整数菁优网©2010-2014菁优网的性质即可确定正n边形的个数.解答:解:∵正多边形每个角:=180﹣,∵内角的度数为整数,∴n是360的约数,360有约数1,2,3,4,5,6,8,9,10,12,15,18,20,24,30,36,40,45,60,72,90,120,180,360共24个,但n不能等于1,2,∴正n边形的个数是22.故选B.点评:本题考查根据多边形的内角和计算公式求多边形的内角的度数,解答时要会根据公式进行正确运算、变形和数据处理.10.如图,△ABC中,∠A=45°,点D、E分别在AB、AC上,则∠1+∠2的大小为()A.225°B.135°C.180°D.315°考点:多边形内角与外角;三角形的外角性质.1184454分析:根据三角形的外角性质可得∠1=∠A+∠ADE,∠2=∠A+∠AED,再根据已知和三角形内角和等于180°即可求解.解答:解:∵∠1=∠A+∠ADE,∠2=∠A+∠AED,∴∠1+∠2=∠A+∠ADE+∠A+∠AED=∠A+(∠ADE+∠A+∠AED)=45°+180°=225°.故选A.点评:考查了三角形的外角性质和三角形内角和定理:三角形内角和等于180°.11.若一个多边形的内角和与外角和的度数比为4:1,则此多边形共有对角线()A.35条B.40条C.10条D.50条考点:多边形内角与外角;多边形的对角线.1184454分析:多边形的内角和可以表示成(n﹣2)•180°,外角和是固定的360°,从而可根据一个多边形的内角和等于它的外角和的4倍列方程求解.多边形对角线的条数可以表示成.解
本文标题:多边形的内角与外角和精选习题
链接地址:https://www.777doc.com/doc-3541006 .html