您好,欢迎访问三七文档
当前位置:首页 > 幼儿/小学教育 > 小学教育 > 小学数学奥数题 周长、面积
第9讲周长、面积、体积、表面积梁碧湘第一节巧求周长专题简析:对于一些不规则的比较复杂的几何图形,要求它们的周长,我们可以运用平移的方法,把它转化为标准的长方形或正方形,然后再利用周长公式进行计算。将一个大长方形或正方形分割成若干个长方形和正方形,那么图形周长就会增加几个长或宽;反之,将若干个小长方形或正方形合成一个大长方形或正方形,图形周长就会减少几个长或宽。例题1:下图是一个楼梯的侧面图,求此图形的周长。3米2米3米2米例题2:下图是由6个边长2厘米的正方形拼成的,这个图形的周长是多少厘米?分析:这题我们可以用平移的方法将它转化为一个长方形,如下图:例题3:两个大小相同的正方形拼成一个长方形后,周长比原来两个正方形周长的和减少了6厘米。原来一个正方形的周长是多少厘?例题4:将一张边长为36厘米的正方形纸,剪成4个完全一样的小正方形纸片,这4个小正方形周长的和比原来的正方形周长增加了多少厘米?第二节组合图形的面积第一专题简析:组合图形是由两个或两个以上的简单的几何图形组合而成的。组合的形式分为两种:一是拼合组合,二是重叠组合。要正确解答组合图形的面积,应该注意以下几点:1,切实掌握有关简单图形的概念、公式,牢固建立空间观念;2,仔细观察,认真思考,看清所求图形是由哪几个基本图形组合而成的;3,适当采用增加辅助线等方法帮助解题;4,采用割、补、分解、代换等方法,可将复杂问题变得简单。例1:一个等腰直角三角形,最长的边是12厘米,这个三角形的面积是多少平方厘米?分析与解答:由于此三角形中只知道最长的边是12厘米,所以,不能用三角形的面积公式来计算它的面积。我们可以假设有4个这样的三角形,且拼成了下图正方形。显然,这个正方形的面积是12×12,那么,一个三角形的面积就是12×12÷4=36平方厘米。例3:四边形ABCD和四边形DEFG都是正方形,已知三角形AFH的面积是7平方厘米。三角形CDH的面积是多少平方厘米?分析:设大正方形的边长是a,小正方形的边长是b。(1)梯形EFAD的面积是(a+b)×b÷2,三角形EFC的面积也是(a+b)×b÷2。所以,两者的面积相等。(2)因为三角形AFH的面积=梯形EFAD的面积-梯形EFHD的面积,而三角形CDH的面积=三角形EFC的面积-梯形EFHD的面积,所以,三角形CDH的面积与三角形AFH的面积相等,也是7平方厘米。例4下图中正方形的边长为8厘米,CE为20厘米,梯形BCDF的面积是多少平方厘米?分析:要求梯形的面积,关键是要求出上底FD的长度。连接FC后就能得到一个三角形EFC,用三角形EBC的面积减去三角形FBC的面积就能得到三角形EFC的面积:8×20÷2-8×8÷2=48平方厘米。FD=48×2÷20=4.8厘米,所求梯形的面积就是(4.8+8)×8÷2=51.2平方厘米。例5图中ABCD是长方形,长为6,宽为4,三角形EFD的面积比三角形ABF的面积大6平方厘米,求ED的长。分析:因为三角形EFD的面积比三角形ABF的面积大6平方厘米,所以,三角形BCE的面积比长方形ABCD的面积大6平方厘米。三角形BCE的面积是6×4+6=30平方厘米,EC的长则是30×2÷6=10厘米。因此,ED的长是10-4=6厘米。组合图形的面积(二)专题简析:在组合图形中,三角形的面积出现的机会很多,解题时我们还可以记住下面三点:1,两个三角形等底、等高,其面积相等;2,两个三角形底相等,高成倍数关系,面积也成倍数关系;3,两个三角形高相等,底成倍数关系,面积也成倍数关系。例题2下图中,边长为10和15的两个正方体并放在一起,求三角形ABC(阴影部分)的面积。分析三角形ADC的面积是10×15÷2=75,而三角形ABC的高是三角形BCD高的15÷10=1.5倍,它们都以BC为边为底,所以,三角形ABC的面积是三角形BCD的1.5倍。阴影部分的面积是:7.5÷(1+1.5)×1.5=45。例题3:两条对角线把梯形ABCD分割成四个三角形。已知两个三角形的面积(如图所示),求另两个三角形的面积各是多少?(单位:平方厘米)分析:1,因为三角形ABD与三角形ACD等底等高,所以面积相等。因此,三角形ABO的面积和三角形DOC的面积相等,也是6平方厘米。2,因为三角形BOC的面积是三角形DOC面积的2倍,所以BO的长度是OD的2倍,即三角形ABO的面积也是三角形AOD的2倍。所以,三角形AOD的面积是6÷2=3平方厘米。例题4:在三角形ABC中,DC=2BD,CE=3AE,阴影部分的面积是20平方厘米,求三角形ABC的面积。分析(1)因为CE=3AE,所以,三角形ADC的面积是三角形ADE面积的4倍,是20×(1+3)=80平方厘为;(2)又因为DC=2BD,所以,三角形ABD的面积是三角形ADC面积的一半,是80÷2=40平方厘米。因此,三角形ABC的面积是80+40=120平方厘主。复杂面积问题专题简析:解答有关“图形面积”问题时,应注意以下几点:1,细心观察,把握图形特点,合理地进行切拼,从而使问题得以顺利地解决;2,从整体上观察图形特征,掌握图形本质,结合必要的分析推理和计算,使隐蔽的数量关系明朗化。例4:街心花园中一个正方形的花坛四周有1米宽的水泥路,如果水泥路的总面积是12平方米,中间花坛的面积是多少平方米?例1:街心花园中一个正方形的花坛四周有1米宽的水泥路,如果水泥路的总面积是12平方米,中间花坛的面积是多少平方米?分析与解答:把水泥路分成四个同样大小的长方形(如下图)。因此,一个长方形的面积是12÷4=3平方米。因为水泥路宽1米,所以小长方形的长是3÷1=3米。从图中可以看出正方形花坛的边长是小长方形长与宽的差,所以小正方形的边长是3-1=2米。中间花坛的面积是2×2=4平方米。例2:一块正方形的钢板,先截去宽5分米的长方形,又截去宽8分米的长方形(如图),面积比原来的正方形减少181平方分米。原正方形的边长是多少?分析与解答:把阴影部分剪下来,并把剪下的两个小长方形拼起来(如图),再被上长、宽分别是8分米、5分米的小长方形,这个拼合成的长方形的面积是181+8×5=221平方分米,长是原来正方形的边长,宽是8+5=13分米。所以,原来正方形的边长是221÷13=17分米。第三节体积专题简析:解答立体图形的体积问题时,要注意以下几点:(1)物体沉入水中,水面上升部分的体积等于物体的体积。把物体从水中取出,水面下降部分的体积等于物体的体积。这是物体全部浸没在水中的情况。如果物体不全部浸在水中,那么排开水的体积就等于浸在水中的那部分物体的体积。解答立体图形的体积问题时要注意:(2)把一种形状的物体变为另一种形状的物体后,形状变了,但它的体积保持不变。(3)求一些不规则形体体积时,可以通过变形的方法求体积。(4)求与体积相关的最大、最小值时,要大胆想象,多思考、多尝试,防止思维定势。例题1:有大、中、小三个正方体水池,它们的内边长分别为6米、3米、2米。把两堆碎石分别沉在中、小水池里,两个水池水面分别升高了6厘米和4厘米。如果将这两堆碎石都沉在大水池里,大水池的水面升高多少厘米?分析:中、小水池升高部分是一个长方体,它的体积就等同于碎石的体积。两个水池水面分别升高了6厘米和4厘米,两堆碎石的体积就是3×3×0.06+2×2×0.04=0.7(立方米)。把它沉到大水池里,水面升高部分的体积也就是0.7立方米,再除以它的底面积就能求得升高了多少厘米。3×3×0.06+2×2×0.04=0.7(立方米)0.7÷6的平方=7/360(米)=1又17/18(厘米)例题2:一个底面半径是10厘米的圆柱形瓶中,水深8厘米,要在瓶中放入长和宽都是8厘米、高是15厘米的一块铁块,把铁块竖放在水中,水面上升几厘米?分析:在瓶中放铁块要考虑铁块是全部沉入水中,还是部分沉入水中。如果铁块是全部沉入水中,排开水的体积是8×8×15=960(立方厘米)。而现在瓶中水深是8厘米,要淹没15厘米高的铁块,水面就要上升15—8=7(厘米),需要排开水的体积是(3.14×10×10—8×8)×7=1750(立方厘米),可知铁块是部分在水中。分析:当铁块放入瓶中后,瓶中水所接触的底面积就是3.14×10×10—8×8=250(平方厘米)。水的形状变了,但体积还是3.14×10×10×8=2512(立方厘米)。水的高度是2512÷250=10.048(厘米),上升10.048—8=2.048(厘米)3.14×10×10×8÷(3.14×10×10—8×8)—8=2512÷250—8=10.048—8=2.048(厘米)例题3:某面粉厂有一容积是24立方米的长方体储粮池,它的长是宽或高的2倍。当贴着它一最大的内侧面将面粉堆成一个最大的半圆锥体时,求这堆面粉的体积(如图28-1所示)。分析:设圆锥体的底面半径是r,则长方体的高和宽也都是r,长是2r。长方体的容积是2r×r×r=24,即r的立方=12。这个半圆锥体的体积是1/3×∏r的平方×r÷2=1/6∏r的立方,将r的立方=12代入,就可以求得面粉的体积。设圆锥体的底面半径是r,则长方体的容积是2r×r×r=24,r的立方=12。1/3×3.14×r的平方×r÷2=1/6×3.14×r的立方=1/6×3.14×12=6.28(立方米)例题4:如果把12件同样的长方体物品打包,形成一件大的包装物,有几种包装方法?怎样打包物体的表面积最小呢?图28—4cba图28—5图28—6分析:设长方体物品的长、宽、高分别是a、b、c,并且a>b>c(入土28-4)。比较“3×4”和“2×6”两种包法。图28-5中大长方体表面积为6ab+8ac+24bc①,图28-6中大长方体的表面积为4ab+12ac+24bc②,两个式子中都曲调相同的部分4ab+8ac+24bc后,①式与②式的大小要看2ab与4ac的大小。(1)当b=2c时,2ab=¥ac,两种包法相同。(2)当b<2c时,“3×4”的包法表面积最小。(3)当b>2c时,“2×6”的包法表面积最小。例题5:一只集装箱,它的内尺寸是18×18×18。现在有批货箱,它的外尺寸是1×4×9。问这只集装箱能装多少只货箱?分析:因为集装箱内尺寸18不是货箱尺寸4的倍数,所以,只能先在18×16×18的空间放货箱,可放18×16×18÷(1×4×9)=144(只)。这时还有18×2×18的空间,但只能在18×2×16的空间放货箱,可放18×2×16÷(1×4×9)=16(只)。最后剩下18×2×2的空间无法再放货箱,所以最多能装144+16=160(只)。18×16×18÷(1×4×9)+18×2×16÷(1×4×9)=144+16=160(只)第4讲表面积专题简析:小学阶段所学的立体图形主要有四种长方体、正方体、圆柱体和圆锥体。在解答立体图形的表面积问题时,要注意以下几点:(1)充分利用正方体六个面的面积都相等,每个面都是正方形的特点。(2)把一个立体图形切成两部分,新增加的表面积等于切面面积的两倍。反之,把两个立体图形粘合到一起,减少的表面积等于粘合面积的两倍。(3)若把几个长方体拼成一个表面积最大的长方体,应把它们最小的面拼合起来。若把几个长方体拼成一个表面积最小的长方体,应把它们最大的面拼合起来。例题1:从一个棱长10厘米的正方体木块上挖去一个长10厘米、宽2厘米、高2厘米的小长方体,剩下部分的表面积是多少?这是一道开放题,分几种情况考虑:①按图27-1所示,沿着一条棱挖,剩下部分的表面积为592平方厘米。②按图27-2所示,在某个面挖,剩下部分的表面积为632平方厘米。③按图27-3所示,挖通某两个对面,剩下部分的表面积为672平方厘米。图27--1图27--2图27--3例题2:把19个棱长为3厘米的正方体重叠起来,如图27-4所示,拼成一个立体图形,求这个立体图形的表面积。图27—4要求这个复杂形体的表面积,必须从整体入手,从上、左、前三个方向观察,每个方向上的小正方体各面就组
本文标题:小学数学奥数题 周长、面积
链接地址:https://www.777doc.com/doc-3580280 .html