您好,欢迎访问三七文档
线面角的三种求法1.直接法:平面的斜线与斜线在平面内的射影所成的角即为直线与平面所成的角。通常是解由斜线段,垂线段,斜线在平面内的射影所组成的直角三角形,垂线段是其中最重要的元素,它可以起到联系各线段的作用。例1(如图1)四面体ABCS中,SA,SB,SC两两垂直,∠SBA=45°,∠SBC=60°,M为AB的中点,求(1)BC与平面SAB所成的角。(2)SC与平面ABC所成的角。解:(1)∵SC⊥SB,SC⊥SA,BMHSCA图1∴SC⊥平面SAB故SB是斜线BC在平面SAB上的射影,∴∠SBC是直线BC与平面SAB所成的角为60°。(2)连结SM,CM,则SM⊥AB,又∵SC⊥AB,∴AB⊥平面SCM,∴面ABC⊥面SCM过S作SH⊥CM于H,则SH⊥平面ABC∴CH即为SC在面ABC内的射影。∠SCH为SC与平面ABC所成的角。sin∠SCH=SH/SC∴SC与平面ABC所成的角的正弦值为√7/7(“垂线”是相对的,SC是面SAB的垂线,又是面ABC的斜线.作面的垂线常根据面面垂直的性质定理,其思路是:先找出与已知平面垂直的平面,然后一面内找出或作出交线的垂线,则得面的垂线。)2.利用公式sinθ=h/ι其中θ是斜线与平面所成的角,h是垂线段的长,ι是斜线段的长,其中求出垂线段的长(即斜线上的点到面的距离)既是关键又是难点,为此可用三棱锥的体积自等来求垂线段的长。例2(如图2)长方体ABCD-A1B1C1D1,AB=3,BC=2,A1A=4,求AB与面AB1C1D所成的角的正弦值。A1C1D1H4CB123BAD解:设点B到AB1C1D的距离为h,∵VB﹣AB1C1=VA﹣BB1C1∴1/3S△AB1C1·h=1/3S△BB1C1·AB,易得h=12/5设AB与面AB1C1D所成的角为θ,则sinθ=h/AB=4/5图23.利用公式cosθ=cosθ1·cosθ2已知,如图,AO是平面的斜线,A是斜足,OB垂直于平面,B为垂足,则直线AB是斜线在平面内的射影。设AC是平面内的任意一条直线,且BCAC,垂足为C,又设AO与AB所成角为1,AB与AC所成角为2,AO与AC所成角为,则易知:1||||cosABAO,212||||cos||coscosACABAO又∵||||cosACAO,可以得到:12coscoscos,注意:2(0,)2易得:1coscos又1,(0,)2即可得:1.则可以得到:平面的斜线和它在平面内的射影所成角,是这条斜线和这个平面内的任一条直线所成角中最小的角;(最小角定理)例3(如图4)已知直线OA,OB,OC两两所成的角为60°,,求直线OA与面OBC所成的角的余弦值。解:∵∠AOB=∠AOC∴OA在面OBC内的射影在∠BOC的平分线OD上,则∠AOD即为OA与面OBC所成的角,可知∠DOC=30°,cos∠AOC=cos∠AOD·cos∠DOC∴cos60°=cos∠AOD·cos30°∴cos∠AOD=√3/3∴OA与面OBC所成的角的余弦值为√3/3。OαDACB图421OCBA练习.如图,在正方体1AC中,求面对角线1AB与对角面11BBDD所成的角。〖解〗(法一)连结11AC与11BD交于O,连结OB,∵111DDAC,1111BDAC,∴1AO平面11BBDD,∴1ABO是1AB与对角面11BBDD所成的角,在1RtABO中,1112AOAB,∴130ABO.(法二)由法一得1ABO是1AB与对角面11BBDD所成的角,又∵112coscos452ABB,116cos3BBBBOBO,∴11112cos32coscos263ABBABOBBO,∴130ABO.【基础知识精讲】1.直线和平面的位置关系一条直线和一个平面的位置关系有且只有如下三种关系:(1)直线在平面内——直线上的所有点在平面内,根据公理1,如果直线上有两个点在平面内,那么这条直线上所有点都在这个平面内.直线a在平面α内,记作aα.(2)直线和平面相交——直线和平面有且只有一个公共点.记作a∩α=A(3)直线和平面平行——如果一条直线和一个平面没有公共点,那么这条直线和这个平面平行.记作a∥α.直线和平面相交或平行两种情况统称直线在平面外,记作aα.2.直线和平面平行的判定判定如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行.(简记“线线平行,则线面平行”)即a∥b,aα,bαa∥α证明直线和平面平行的方法有:①依定义采用反证法②利用线面平行的判定定理③面面平行的性质定理也可证明3.直线和平面平行的性质定理性质如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行(简记为“线面平行,线线平行”).即a∥α,aβ,α∩β=ba∥b.这为证线线平行积累了方法:①排除异面与相交②公理4③线面平行的性质定理1B1A1CABC1DDO【重点难点解析】本节重点是直线与平面的三种位置关系,直线和平面平行的判定和性质,难点是直线和平面平行的性质的应用.例1如图,ABCD和ABEF均为平行四边形,M为对角线AC上的一点,N为对角线FB上的一点,且有AM∶FN=AC∶BF,求证:MN∥平面CBE.分析:欲证MN∥平面CBE,当然还是需要证明MN平行于平面CBE内的一条直线才行.题目上所给的是线段成比例的关系,因此本题必须通过三角形相似,由比例关系的变通,才能达到“线线平行”到“线面平行”的转化.证:连AN并延长交BE的延长线于P.∵BE∥AF,∴ΔBNP∽ΔFNA.∴=,则=.即=.又=,=,∴=.∴MN∥CP,CP平面CBE.∴MN∥平面CBE.例2一直线分别平行于两个相交平面,则这条直线与它们的交线平行.已知:α∩β=a,l∥α,l∥β.求证:l∥a.分析:由线面平行推出线线平行,再由线线平行推出线面平行,反复应用线面平行的判定和性质.证明:过l作平面交α于b.∵l∥α,由性质定理知l∥b.过l作平面交β于c.∵l∥β,由性质定理知l∥c.∴b∥c,显然cβ.∴b∥β.又bα,α∩β=a,∴b∥a.又l∥b.∴l∥a.评注:本题在证明过程中注意文字语言、符号语言,图形语言的转换和使用.例3如图,在正四棱锥S—ABCD中,P在SC上,Q在SB上,R在SD上,且SP∶PC=1∶2,SQ∶SB=2∶3,SR∶RD=2∶1.求证:SA∥平面PQR.分析:根据直线和平面平行的判定定理,必须在平面PQR内找一条直线与AS平行即可.证:连AC、BD,设交于O,连SO,连RQ交SO于M,取SC中点N,连ON,那么ON∥SA.∵==∴RQ∥BD∴=而=∴=∴PM∥ON∵SA∥ON.∴SA∥PM,PM平面PQR∴SA∥平面PQR.评析:利用平几中的平行线截比例线段定理.三角形的中位线性质等知识促成“线线平行”向“线面平行”的转化.例4证明:过平面上一点而与这平面的一条平行线平行的直线,在这平面上.证明如图,设直线a∥平面α,点A∈α,A∈直线b,b∥a,欲证bα.事实上,∵b∥a,可确定平面β,β与α有公共点A,∴α,B交于过A的直线c,∵a∥α,∴a∥c,从而在β上有三条直线,其中b、c均过点A且都与a平行.于是b、c重合,即bα.【难题巧解点拨】例1S是空间四边形ABCD的对角线BD上任意一点,E、F分别在AD、CD上,且AE∶AD=CF∶CD,BE与AS相交于R,BF与SC相交于Q.求证:EF∥RQ.证在ΔADC中,因AE∶AD=CF∶CD,故EF∥AC,而AC平面ACS,故EF∥平面ACS.而RQ=平面ACS∩平面RQEF,故EF∥RQ(线面平行性质定理).例2已知正方体ABCD—A′B′C′D′中,面对角线AB′、BC′上分别有两点E、F且B′E=C′F求证:EF∥平面AC.分析如图,欲证EF∥平面AC,可证与平面AC内的一条直线平行,也可以证明EF所在平面与平面AC平行.证法1过E、F分别做AB、BC的垂线EM、FN交AB、BC于M、N,连接MN∵BB′⊥平面AC∴BB′⊥AB,BB′⊥BC∴EM⊥AB,FN⊥BC∴EM∥FN,∵AB′=BC′,B′E=C′F∴AE=BF又∠B′AB=∠C′BC=45°∴RtΔAME≌RtΔBNF∴EM=FN∴四边形MNFE是平行四边形∴EF∥MN又MN平面AC∴EF∥平面AC证法2过E作EG∥AB交BB′于G,连GF∴=∵B′E=C′F,B′A=C′B∴=∴FG∥B′C′∥BC又∵EG∩FG=G,AB∩BC=B∴平面EFG∥平面AC又EF平面EFG∴EF∥平面AC例3如图,四边形EFGH为四面体A—BCD的一个截面,若截面为平行四边形,求证:(1)AB∥平面EFGH;(2)CD∥平面EFGH证明:(1)∵EFGH为平行四边形,∴EF∥HG,∵HG平面ABD,∴EF∥平面ABD.∵EF平面ABC,平面ABD∩平面ABC=AB.∴EF∥AB,∴AB∥平面EFGH.(2)同理可证:CD∥EH,∴CD∥平面EFGH.评析:由线线平行线面平行线线平行.【课本难题解答】1.求证:如果两条平行线中的一条和一个平面相交,那么另一条也和这个平面相交.已知:a∥b,a∩α=A,求证:b和α相交.证明:假设bα或b∥α.若bα,∵b∥a,∴a∥α.这与a∩α=A矛盾,∴bα不成立.若b∥α,设过a、b的平面与α交于c.∵b∥α,∴b∥c,又a∥b∴a∥c∴a∥α这与a∩α=A矛盾.∴b∥α不成立.∴b与α相交.2.求证:如果两个相交平面分别经过两条平行直线中的一条,那么它们的交线和这条直线平行.已知:a∥b,aα,bβ,α∩β=c.求证:c∥a∥b【命题趋势分析】本节主要掌握直线和平面的位置关系的判定,直线与平面平行的证明与应用,它是高考中常考的内容,难度适中,因此学习好本节内容至关重要.【典型热点考题】例1在下列命题中,真命题是()A.若直线m、n都平行平面α,则m∥n;B.设α—l—β是直二面角,若直线m⊥l,则m⊥n,m⊥β;C.若直线m、n在平面α内的射影是一个点和一条直线,且m⊥n,则n在α内或n与α平行;D.设m、n是异面直线,若m和平面α平行,则n与α相交.解对于直线的平行有传递性,而两直线与平面的平行没有传递性故A不正确;平面与平面垂直可得出线面垂直,要一直线在一平面内且垂直于交线,而B中m不一定在α内,故不正确;对D来说存在平面同时和两异面直线平行,故不正确;应选C.例2设a、b是两条异面直线,在下列命题中正确的是()A.有且仅有一条直线与a、b都垂直B.有一平面与a、b都垂直C.过直线a有且仅有一平面与b平行D.过空间中任一点必可作一条直线与a、b都相交解因为与异面直线a、b的公垂线平行的直线有无数条,所以A不对;若有平面与a、b都垂直,则a∥b不可能,所以B不对.若空间的一点与直线a(或b)确定的平面与另一条直线b(或a)平行,则过点与a相交的直线必在这个平面内,它不可能再与另一条直线相交,所以D不对,故选C.例3三个平面两两相交得三条交线,若有两条相交,则第三条必过交点;若有两条平行,则第三条必与之平行.已知:α∩β=a,α∩=b,∩α=c.求证:要么a、b、c三线共点,要么a∥b∥c.证明:①如图一,设a∩b=A,∵α∩β=a.∴aα而A∈a.∴A∈α.又β∩=b∴b,而A∈b.∴A∈.则A∈α,A∈,那么A在α、的交线c上.从而a、b、c三线共点.②如图二,若a∥b,显然c,b∴a∥而aα,α∩=c.∴a∥c从而a∥b∥
本文标题:线面角的求法总结
链接地址:https://www.777doc.com/doc-3586422 .html