您好,欢迎访问三七文档
当前位置:首页 > 高等教育 > 其它文档 > y=a(x-h)2的图象和性质课件
二次函数y=a(x-h)2的图象和性质1.二次函数y=x2+c的图象是什么?答:是抛物线2.二次函数的性质有哪些?请填写下表:函数开口方向对称轴顶点坐标Y的最值增减性在对称轴左侧在对称轴右侧y=ax2a>0a<0y=ax2+ca>0a<0向上Y轴(0,0)最小值是0Y随x的增大而减小Y随x的增大而增大向下Y轴(0,0)最大值是0Y随x的增大而增大Y随x的增大而减小向上Y轴(0,c)最小值是CY随x的增大而减小Y随x的增大而增大向下Y轴(0,c)最大值是CY随x的增大而增大Y随x的增大而减小在同一坐标系中作出二次函数y=3x2,y=3(x-1)2和y=3(x+1)2的图象.完成下表,并比较3x2,3(x-1)2和3(x+1)2的值,它们之间有什么关系?函数y=a(x-h)2(a≠0)的图象和性质x-4-3-2-10123423xy213xy213xy27123031227271230312272712303122727123031227图象是轴对称图形.对称轴是平行于y轴的直线:x=-1.顶点坐标是点(-1,0).二次函数y=3(x+1)2与y=3x2的图象形状相同,可以看作是抛物线y=3x2整体沿x轴向左平移了1个单位.1.函数y=3(x+1)2的图象与y=3x2和y=3(x-1)2的图象有什么关系?它是轴对称图形吗?它的对称轴和顶点坐标分别是什么?二次项系数相同a0,开口都向上.想一想,二次函数y=3(x+1)2的图象的增减性会怎样?23xy213xy213xy23xy213xy在对称轴(直线:x=-1)左侧(即x-1时),函数y=3(x+1)2的值随x的增大而减少,.顶点是最低点,函数有最小值.当x=-1时,最小值是0..二次函数y=3(x+1)2与y=3x2的增减性类似.2.x取哪些值时,函数y=3(x+1)2的值随x值的增大而增大?x取哪些值时,函数y=3(x+1)2的值随x的增大而减少?在对称轴(直线:x=-1)右侧(即x-1时),函数y=3(x+1)2的值随x的增大而增大,.猜一猜,函数y=-3(x-1)2,y=-3(x+1)2和y=-3x2的图象的位置和形状.请你总结二次函数y=a(x-h)2的图象和性质.213xy2.抛物线y=-3(x-1)2和y=-3(x+1)2在x轴的下方(除顶点外),它的开口向下,并且向下无限伸展.23xy213xy213xyy3.抛物线y=-3(x-1)2在对称轴(x=1)的左侧,当x1时,y随着x的增大而增大;在对称轴(x=1)右侧,当x1时,y随着x的增大而减小.当x=1时,函数y的值最大(是0);抛物线y=-3(x+1)2在对称轴(x=-1)的左侧,当x-1时,y随着x的增大而增大;在对称轴(x=-1)右侧,当x-1时,y随着x的增大而减小.当x=-1时,函数y的值最大(是0).二次函数y=-3(x-1)2,y=-3(x+1)2和y=-3x2的图象4.抛物线y=-3(x-1)2可以看作是抛物线y=-3x2沿x轴向右平移了1个单位;抛物线y=-3(x+1)2可以看作是抛物线y=-3x2沿x轴向左平移了1个单位.X=-1X=11.抛物线y=-3(x-1)2的顶点是(1,0);对称轴是直线:x=1;抛物线y=-3(x+1)2的顶点是(-1,0);对称轴是直线:x=-1.在同一个直角坐标系里画出函数与的图象.212yx2122yxxy0-8-6-4-2246820161284-2描点,连线212yx1012-10-1222122yx观察这两个函数的图象,它们有什么关系?xy0-8-6-4-2246820161284-2描点,连线212yx1012-10-1222122yx2xyO函数y=(x-2)2的图象与y=x2的图象有什么关系?它是轴对称图形吗?它的对称轴和顶点坐标分别是什么?1212二次项系数相同a0,开口都向上,两个二次函数的图象形状相同,可以看作是抛物线y=x2整体沿x轴向右平移了2个单位122xyO函数y=(x-2)2的图象与y=x2的图象有什么关系?它是轴对称图形吗?它的对称轴和顶点坐标分别是什么?1212顶点坐标是点(2,0).图象是轴对称图形对称轴是平行于y轴的直线:x=2.直线x=22xyOx取哪些值时,函数y=(x-1)2的值随x值的增大而减小?x取哪些值时,函数y=(x-1)2的值随x的增大而增大?1212在对称轴(直线:x=2)左侧(即x2时),y的值随x的增大而减小,.在对称轴(直线:x=2)右侧(即x2时),y的值随x的增大而增大,.顶点是最低点,函数有最小值.当x=2时,最小值是0..2122yx212yx2122yx函数的图象可以看成由的图象向_____平移___个单位得到,它们的形状和开口大小相同函数的图象可以看成由的图象向____平移___个单位得到,它们的形状和开口大小相同212yx这里的平移方向有什么规律?右左221.抛物线y=a(x-h)2的顶点是(h,0),对称轴是平行于y轴的直线x=h.3.当a0时,在对称轴(x=h)的左侧,y随着x的增大而减小;在对称轴(x=h)右侧,y随着x的增大而增大;当x=h时函数y的值最小(是0).当a0时,在对称轴(x=h)的左侧,y随着x的增大而增大;在对称轴(x=h)的右侧,y随着x增大而减小;当x=h时,函数y的值最大(是0).二次函数y=a(x-h)2的性质2hxay2.当a0时,抛物线y=a(x-h)2在x轴的上方(除顶点外),它的开口向上,并且向上无限伸展;当a0时,抛物线y=a(x-h)2在x轴的下方(除顶点外),它的开口向下,并且向下无限伸展.2axyX=hX=h4.越大,开口越小,越小,开口越大.aa二次函数y=a(x-h)2与y=ax2的图象形状相同,可以看作是抛物线y=ax2整体沿x轴平移了个单位(当h0时,向右移个单位;当h0时,向左移个单位)得到的.hhh函数y=a(x-h)2(a≠0)的图象和性质1.函数y=a(x-h)2(a≠0)的图象可由函数y=ax2的图象平移得到.当h0时,向___平移___个单位当h0时,向___平移____个单位对称轴为:_________.顶点为____h|h|右左直线x=h(h,0)2.当a0时,抛物线在x轴的上方(除顶点外),它的开口向上,并且向上无限伸展;当a0时,抛物线在x轴的下方(除顶点外),它的开口向下,并且向下无限伸展.函数y=a(x-h)2(a≠0)的图象和性质3.当a0时,在对称轴(x=h)的左侧,y随着x的增大而减小;在对称轴(x=h)右侧,y随着x的增大而增大;当x=h时函数y的值最小(是0).当a0时,在对称轴(x=h)的左侧,y随着x的增大而增大;在对称轴(x=h)的右侧,y随着x增大而减小;当x=h时,函数y的值最大(是0).直线x=h二次函数y=a(x-h)2的性质1.顶点坐标与对称轴2.位置与开口方向3.增减性与最值开口大小抛物线顶点坐标对称轴位置开口方向增减性最值y=a(x-h)2(a0)y=a(x-h)2(a0)(h,0)(h,0)直线x=h直线x=h在x轴的上方(除顶点外)在x轴的下方(除顶点外)向上向下当x=h时,最小值为0.当x=h时,最大值为0.在对称轴的左侧,y随着x的增大而减小.在对称轴的右侧,y随着x的增大而增大.在对称轴的左侧,y随着x的增大而增大.在对称轴的右侧,y随着x的增大而减小.根据图形填表:越小,开口越大.越大,开口越小.aa2hxay函数开口方向对称轴顶点坐标Y的最值增减性在对称轴左侧在对称轴右侧y=ax2a>0a<0y=ax2+ca>0a<0y=a(x-h)2a>0a<0向上Y轴(0,0)最小值是0Y随x的增大而减小Y随x的增大而增大向下Y轴(0,0)最大值是0Y随x的增大而增大Y随x的增大而减小向上Y轴(0,c)最小值是CY随x的增大而减小Y随x的增大而增大向下Y轴(0,c)最大值是CY随x的增大而增大Y随x的增大而减小向上直线x=h(h,0)Y随x的增大而减小最小值是0Y随x的增大而增大向下直线x=h(h,0)最大值是0Y随x的增大而增大Y随x的增大而减小例1.填空题(1)二次函数y=2(x+5)2的图像是,开口,对称轴是,当x=时,y有最值,是.(2)二次函数y=-3(x-4)2的图像是由抛物线y=-3x2向平移个单位得到的;开口,对称轴是,当x=时,y有最值,是.抛物线向上直线x=-5-5小0右4向下直线x=44大0(3)将二次函数y=2x2的图像向右平移3个单位后得到函数的图像,其对称轴是,顶点是,当x时,y随x的增大而增大;当x时,y随x的增大而减小.(4)将二次函数y=-3(x-2)2的图像向左平移3个单位后得到函数的图像,其顶点坐标是,对称轴是,当x=时,y有最值,是.y=2(x-3)2直线x=3(3,0)>3<3y=-3(x+1)2(-1,0)直线x=-1-1大0(5)将函数y=3(x-4)2的图象沿x轴对折后得到的函数解析式是;将函数y=3(x-4)2的图象沿y轴对折后得到的函数解析式是;y=-3(x-4)2y=3(x+4)2(6)把抛物线y=a(x-4)2向左平移6个单位后得到抛物线y=-3(x-h)2的图象,则a=,h=.若抛物线y=a(x-4)2的顶点A,且与y轴交于点B,抛物线y=-3(x-h)2的顶点是M,则SΔMAB=.-3-2144(7)将抛物线y=2x2-3先向上平移3单位,就得到函数的图象,在向平移个单位得到函数y=2(x-3)2的图象.y=2x2右31、说出下列抛物线的开口方向、顶点坐标和对称轴:y=(x+1)2(1)y=-(x-5)2(2)y=2(x-3)2(3)y=-12(x+3)2(5)y=-2(x-1)2(4)y=(x+1)2(1)y=-(x-5)2(2)y=2(x-3)2(3)y=-12(x+3)2(5)y=-2(x-1)2(4)2、根据下列函数的解析式回答当x为何值时,y随x的增大而增大?y=2x23、把抛物线向左平移3个单位,可得到抛物线.右4y=2x2y=2(x-1)24、把抛物线向平移个单位,可得到抛物线y=2(x+3)25、把抛物线向平移个单位,可得到抛物线y=-23(x+2)2y=-23(x-5)22288yxxy=2x26、把抛物线向平移个单位,可得到抛物线y=2(x+3)2y=2(x-1)2
本文标题:y=a(x-h)2的图象和性质课件
链接地址:https://www.777doc.com/doc-3623121 .html