您好,欢迎访问三七文档
1第一讲数与式1.1数与式的运算1.1.1.绝对值绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即,0,||0,0,,0.aaaaaa绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离.两个数的差的绝对值的几何意义:ba表示在数轴上,数a和数b之间的距离.练习1.填空:(1)若5x,则x=_________;若4x,则x=_________.(2)如果5ba,且1a,则b=________;若21c,则c=________.2.选择题:下列叙述正确的是()(A)若ab,则ab(B)若ab,则ab(C)若ab,则ab(D)若ab,则ab3.化简:|x-5|-|2x-13|(x>5).1.1.2.乘法公式我们在初中已经学习过了下列一些乘法公式:(1)平方差公式22()()ababab;(2)完全平方公式222()2abaabb.我们还可以通过证明得到下列一些乘法公式:(1)立方和公式2233()()abaabbab;(2)立方差公式2233()()abaabbab;(3)三数和平方公式2222()2()abcabcabbcac;(4)两数和立方公式33223()33abaababb;(5)两数差立方公式33223()33abaababb.对上面列出的五个公式,有兴趣的同学可以自己去证明.例1计算:22(1)(1)(1)(1)xxxxxx.例2已知4abc,4abbcac,求222abc的值.练习1.填空:(1)221111()9423abba();(2)(4m22)164(mm);2(3)2222(2)4(abcabc).2.选择题:(1)若212xmxk是一个完全平方式,则k等于()(A)2m(B)214m(C)213m(D)2116m(2)不论a,b为何实数,22248abab的值()(A)总是正数(B)总是负数(C)可以是零(D)可以是正数也可以是负数1.1.3.二次根式一般地,形如(0)aa的代数式叫做二次根式.根号下含有字母、且不能够开得尽方的式子称为无理式.例如232aabb,22ab等是无理式,而22212xx,222xxyy,2a等是有理式.1.分母(子)有理化把分母(子)中的根号化去,叫做分母(子)有理化.为了进行分母(子)有理化,需要引入有理化因式的概念.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式互为有理化因式,例如2与2,3a与a,36与36,2332与2332,等等.一般地,ax与x,axby与axby,axb与axb互为有理化因式.分母有理化的方法是分母和分子都乘以分母的有理化因式,化去分母中的根号的过程;而分子有理化则是分母和分子都乘以分母的有理化因式,化去分子中的根号的过程在二次根式的化简与运算过程中,二次根式的乘法可参照多项式乘法进行,运算中要运用公式(0,0)ababab;而对于二次根式的除法,通常先写成分式的形式,然后通过分母有理化进行运算;二次根式的加减法与多项式的加减法类似,应在化简的基础上去括号与合并同类二次根式.2.二次根式2a的意义2aa,0,,0.aaaa例1将下列式子化为最简二次根式:(1)12b;(2)2(0)aba;(3)64(0)xyx.例2计算:3(33).例3试比较下列各组数的大小:(1)1211和1110;(2)264和226-.例4化简:20042005(32)(32).3例5化简:(1)945;(2)2212(01)xxx.例6已知3232,3232xy,求22353xxyy的值.练习1.填空:(1)1313=_____;(2)若2(5)(3)(3)5xxxx,则x的取值范围是_____;(3)4246543962150_____;(4)若52x,则11111111xxxxxxxx________.2.选择题:等式22xxxx成立的条件是()(A)2x(B)0x(C)2x(D)02x3.若22111aaba,求ab的值.4.比较大小:2-35-4(填“>”,或“<”).1.1.4.分式1.分式的意义形如AB的式子,若B中含有字母,且0B,则称AB为分式.当M≠0时,分式AB具有下列性质:AAMBBM;AAMBBM.上述性质被称为分式的基本性质.2.繁分式像abcd,2mnpmnp这样,分子或分母中又含有分式的分式叫做繁分式.例1若54(2)2xABxxxx,求常数,AB的值.4解得2,3AB.例2(1)试证:111(1)1nnnn(其中n是正整数);(2)计算:1111223910;(3)证明:对任意大于1的正整数n,有11112334(1)2nn.例3设cea,且e>1,2c2-5ac+2a2=0,求e的值.练习1.填空题:对任意的正整数n,1(2)nn(112nn);2.选择题:若223xyxy,则xy=()(A)1(B)54(C)45(D)653.正数,xy满足222xyxy,求xyxy的值.4.计算1111...12233499100.习题1.11.解不等式:(1)13x;(2)327xx;(3)116xx.2.已知1xy,求333xyxy的值.3.填空:(1)1819(23)(23)=________;(2)若22(1)(1)2aa,则a的取值范围是________;(3)111111223344556________.1.2分解因式因式分解的主要方法有:十字相乘法、提取公因式法、公式法、分组分解法,另外还应了解求根法及待定系数法.1.十字相乘法例1分解因式:(1)x2-3x+2;(2)x2+4x-12;(3)22()xabxyaby;(4)1xyxy.5解:(1)如图1.2-1,将二次项x2分解成图中的两个x的积,再将常数项2分解成-1与-2的乘积,而图中的对角线上的两个数乘积的和为-3x,就是x2-3x+2中的一次项,所以,有x2-3x+2=(x-1)(x-2).说明:今后在分解与本例类似的二次三项式时,可以直接将图1.2-1中的两个x用1来表示(如图1.2-2所示).(2)由图1.2-3,得x2+4x-12=(x-2)(x+6).(3)由图1.2-4,得22()xabxyaby=()()xayxby(4)1xyxy=xy+(x-y)-1=(x-1)(y+1)(如图1.2-5所示).2.提取公因式法与分组分解法例2分解因式:(1)32933xxx;(2)222456xxyyxy.(2)222456xxyyxy=222(4)56xyxyy=22(4)(2)(3)xyxyy=(22)(3)xyxy.或222456xxyyxy=22(2)(45)6xxyyxy=(2)()(45)6xyxyxy=(22)(3)xyxy.3.关于x的二次三项式ax2+bx+c(a≠0)的因式分解.若关于x的方程20(0)axbxca的两个实数根是1x、2x,则二次三项式2(0)axbxca就可分解为12()()axxxx.例3把下列关于x的二次多项式分解因式:(1)221xx;(2)2244xxyy.练习1.选择题:多项式22215xxyy的一个因式为()(A)25xy(B)3xy(C)3xy(D)5xy2.分解因式:(1)x2+6x+8;(2)8a3-b3;-1-2xx图1.2-1-1-211图1.2-2-2611图1.2-3-ay-byxx图1.2-4-11xy图1.2-56(3)x2-2x-1;(4)4(1)(2)xyyyx.习题1.21.分解因式:(1)31a;(2)424139xx;(3)22222bcabacbc;(4)2235294xxyyxy.2.在实数范围内因式分解:(1)253xx;(2)2223xx;(3)2234xxyy;(4)222(2)7(2)12xxxx.3.ABC三边a,b,c满足222abcabbcca,试判定ABC的形状.4.分解因式:x2+x-(a2-a).第二讲函数与方程2.1一元二次方程2.1.1根的判别式我们知道,对于一元二次方程ax2+bx+c=0(a≠0),用配方法可以将其变形为2224()24bbacxaa.①因为a≠0,所以,4a2>0.于是(1)当b2-4ac>0时,方程①的右端是一个正数,因此,原方程有两个不相等的实数根x1,2=242bbaca;(2)当b2-4ac=0时,方程①的右端为零,因此,原方程有两个等的实数根x1=x2=-2ba;(3)当b2-4ac<0时,方程①的右端是一个负数,而方程①的左边2()2bxa一定大于或等于零,因此,原方程没有实数根.由此可知,一元二次方程ax2+bx+c=0(a≠0)的根的情况可以由b2-4ac来判定,我们把b2-4ac叫做一元二次方程ax2+bx+c=0(a≠0)的根的判别式,通常用符号“Δ”来表示.综上所述,对于一元二次方程ax2+bx+c=0(a≠0),有7(1)当Δ>0时,方程有两个不相等的实数根x1,2=242bbaca;(2)当Δ=0时,方程有两个相等的实数根x1=x2=-2ba;(3)当Δ<0时,方程没有实数根.例1判定下列关于x的方程的根的情况(其中a为常数),如果方程有实数根,写出方程的实数根.(1)x2-3x+3=0;(2)x2-ax-1=0;(3)x2-ax+(a-1)=0;(4)x2-2x+a=0.说明:在第3,4小题中,方程的根的判别式的符号随着a的取值的变化而变化,于是,在解题过程中,需要对a的取值情况进行讨论,这一方法叫做分类讨论.分类讨论这一思想方法是高中数学中一个非常重要的方法,在今后的解题中会经常地运用这一方法来解决问题.2.1.2根与系数的关系(韦达定理)若一元二次方程ax2+bx+c=0(a≠0)有两个实数根2142bbacxa,2242bbacxa,则有2212442222bbacbbacbbxxaaaa;2222122244(4)42244bbacbbacbbacaccxxaaaaa.所以,一元二次方程的根与系数之间存在下列关系:如果ax2+bx+c=0(a≠0)的两根分别是x1,x2,那么x1+x2=ba,x1·x2=ca.这一关系也被称为韦达定理.特别地,对于二次项系数为1的一元二次方程x2+px+q=0,若x1,x2是其两根,由韦达定理可知x1+x2=-p,x1·x2=q,即p=-(x1+x2),q=x1·x2,所以,方程x2+px+q=0可化为x2-(x1+x2)x+x1·x2=0,由于x1,x2是一元二次方程x2+px+q=0的两根,所以,x1,x2也是一元二次方程x2-(x1+x2)x+x1·x2=0.因此有以两个数x1,x2为根的一元二次方程(二次项系数为1)是x2-(x1+x2)x+x1·x2=0.例2已知方程2560xkx的一个根是2,求它的另一个根及k的值.8例3已知关于x的方程x2+2(m-2)x+m2+4=0有两个实数根,并且这两个实数根的平方和比两个根的积大21,求m的值.例4已知两个数的和为4,积为-12,求这两个数.例5若x1和x2分别是一元二次方
本文标题:初三数学复习提纲
链接地址:https://www.777doc.com/doc-3637098 .html