您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 项目/工程管理 > 2015年09月13日的初中数学组卷(相似压轴题)
相似压轴题12015年09月13日的初中数学组卷(相似压轴题)一.选择题(共10小题)1.(2014•武汉模拟)如图△ABC≌△DEC,公共顶点为C,B在DE上,则有结论①∠ACD=∠BCE=∠ABD;②∠DAC+∠DBC=180°;③△ADC∽△BEC;④CD⊥AB,其中成立的是()A.①②③B.只有②④C.只有①和②D.①②③④2.(2014•合川区校级模拟)如图,ABCD、CEFG是正方形,E在CD上,直线BE、DG交于H,且HE•HB=,BD、AF交于M,当E在线段CD(不与C、D重合)上运动时,下列四个结论:①BE⊥GD;②AF、GD所夹的锐角为45°;③GD=;④若BE平分∠DBC,则正方形ABCD的面积为4.其中正确的结论个数有()A.1个B.2个C.3个D.4个3.(2014•牡丹江三模)如图,正方形ABCD中,P为对角线上的点,PB=AB,连PC,作CE⊥CP交AP的延长线于E,AE交CD于F,交BC的延长线于G,则下列结论:①E为FG的中点;②FG2=4CF•CD;③AD=DE;④CF=2DF.其中正确的个数是()A.1个B.2个C.3个D.4个4.(2012•孝南区校级模拟)如图,在锐角△ABC中,∠BAC=60°,BD、CE为高,F为BC的中点,连接DE、DF、EF,则结论:①B、E、D、C四点共圆;②AD•AC=AE•AB;③△DEF是等边三角形;④当∠ABC=45°时,BE=DE中,一定正确的有()A.4个B.3个C.2个D.1个5.(2012•沙坪坝区校级二模)如图,P、Q是矩形ABCD的边BC和CD延长上的两点,AP与CQ相交于点E,且∠PAD=∠QAD,则①DQ=DE;②∠BAP=∠AQE;③AQ⊥PQ;④EQ=2CP;⑤S△APQ=S矩形ABCD.下列四个结论中正确的是()A.①②⑤B.①③⑤C.①②④D.①②③④相似压轴题26.(2011•河北模拟)将三角形纸片△ABC按如图所示的方式折叠,使点B落在边AC上,记为点B′,折痕为EF.已知AB=AC=6,BC=8,若以点B′,F,C为顶点的三角形与△ABC相似,那么BF的长度是()A.B.4C.或2D.4或7.(2011•台州校级模拟)如图,Rt△ABC中,AC⊥BC,AD平分∠BAC交BC于点D,DE⊥AD交AB于点E,M为AE的中点,BF⊥BC交CM的延长线于点F,BD=4,CD=3.下列结论:①∠AED=∠ADC;②=;③AC•BE=12;④3BF=4AC.其中结论正确的个数有()A.1个B.2个C.3个D.4个8.(2009•漳州自主招生)如图,在△ABC中,AC=15,BC=18,cosC=,DE∥BC,DF⊥BC,若S△BFD=2S△BDE,则CD长为()A.7.5B.9C.10D.59.(2005•宁夏)如图,▱ABCD中,点E、F分别是AD、AB的中点,EF交AC于点G,那么AG:GC的值是()A.1:2B.1:3C.1:4D.2:310.(2001•杭州)如图,在正三角形ABC中,D,E分别在AC,AB上,且,AE=BE,则有()A.△AED∽△BEDB.△AED∽△CBDC.△AED∽△ABDD.△BAD∽△BCD二.填空题(共10小题)11.(2015•莘县二模)如图,n+1个边长为2的等边三角形有一条边在同一直线上,设△B2D1C1的面积为S1,△B3D2C2的面积为S2,…,△Bn+1DnCn的面积为Sn,则S2=;Sn=.(用含n的式子表示)相似压轴题312.(2013•安徽模拟)如图,△ABC中,CD⊥AB于D,由下列条件中的某一个就能推出△ABC是直角三角形的是.(把所有正确答案的序号都填写在横线上)①∠ACD=∠B;②∠A:∠B:∠C=4:3:5;③AC•BC=AB•CD;④.13.(2012•资阳)如图,O为矩形ABCD的中心,M为BC边上一点,N为DC边上一点,ON⊥OM,若AB=6,AD=4,设OM=x,ON=y,则y与x的函数关系式为.14.(2012•萧山区校级模拟)如图,直角三角形ABC中,∠C=90°,AC=1,BC=2,P为斜边AB上一动点.PE⊥BC,PF⊥CA,则线段EF长的最小值为.15.(2011•通州区一模)已知△ABC中,AB=AC=m,∠ABC=72°,BB1平分∠ABC交AC于B1,过B1作B1B2∥BC交AB于B2,作B2B3平分∠AB2B1,交AC于B3,过B3作B3B4∥BC,交AB于B4…依次进行下去,则B9B10线段的长度用含有m的代数式可以表示为.16.(2009•泸州)如图,已知Rt△ABC中,AC=3,BC=4,过直角顶点C作CA1⊥AB,垂足为A1,再过A1作A1C1⊥BC,垂足为C1,过C1作C1A2⊥AB,垂足为A2,再过A2作A2C2⊥BC,垂足为C2,…,这样一直做下去,得到了一组线段CA1,A1C1,C1A2,…,则CA1=,=.17.(2013•北京一模)如图所示,在△ABC中,BC=6,E,F分别是AB,AC的中点,点P在射线EF上,BP交CE于D,点Q在CE上且BQ平分∠CBP,设BP=y,PE=x.当CQ=CE时,y与x之间的函数关系式是;当CQ=CE(n为不小于2的常数)时,y与x之间的函数关系式是.相似压轴题418.(2008•温州)如图,点A1,A2,A3,A4在射线OA上,点B1,B2,B3在射线OB上,且A1B1∥A2B2∥A3B3,A2B1∥A3B2∥A4B3.若△A2B1B2,△A3B2B3的面积分别为1,4,则图中三个阴影三角形面积之和为.19.(2009•孝感)如图,点M是△ABC内一点,过点M分别作直线平行于△ABC的各边,所形成的三个小三角形△1,△2,△3(图中阴影部分)的面积分别是4,9和49.则△ABC的面积是.20.(2013•武汉模拟)如图,直角梯形ABCD中,AD∥BC,∠BAC=∠ADC=90°,AB=AC,CE平分∠ACB交AB于点E,F为BC上一点,BF=AE,连接AF交CE于点G,连接DG交AC于点H.下列结论:①AF⊥CE;②△ABF∽△DGA;③AF=DH;④.其中正确的结论有.三.解答题(共10小题)21.(2014•滨州)如图,矩形ABCD中,AB=20,BC=10,点P为AB边上一动点,DP交AC于点Q.(1)求证:△APQ∽△CDQ;(2)P点从A点出发沿AB边以每秒1个单位长度的速度向B点移动,移动时间为t秒.①当t为何值时,DP⊥AC?②设S△APQ+S△DCQ=y,写出y与t之间的函数解析式,并探究P点运动到第几秒到第几秒之间时,y取得最小值.22.(2013•上城区二模)如图①,正方形ABCD中,点A,B的坐标分别为(0,10),(8,4),点C在第一象限.动点P在正方形ABCD的边上,从点A出发沿A→B→C→D→A匀速运动,同时动点Q在x轴正半轴上运动,当点P到达A点时,两点同时停止运动,点P的运动速度是点Q的5倍,设运动的时间为t秒.点Q的横坐标x(单位长度)关于运动时间t(秒)的函数图象如图②所示.(1)请写出点Q开始运动时的坐标及点P的运动速度;(2)当点P在边AB上运动时,求△OPQ的面积最大时点P的坐标;(3)如果点P,Q保持原速度不变,当点P沿A→B→C→D→A匀速运动时,OP与PQ能否相等?若能,直接写出所有符合条件的t的值.相似压轴题523.(2015•成都模拟)已知点E在△ABC内,∠ABC=∠EBD=α,∠ACB=∠EDB=60°,∠AEB=150°,∠BEC=90°.(1)当α=60°时(如图1),①判断△ABC的形状,并说明理由;②求证:BD=AE;(2)当α=90°时(如图2),求的值.24.(2015•宜城市模拟)如图,在平面直角坐标系xOy中,矩形AOCD的顶点A的坐标是(0,4),现有两动点P、Q,点P从点O出发沿线段OC(不包括端点O,C)以每秒2个单位长度的速度,匀速向点C运动,点Q从点C出发沿线段CD(不包括端点C,D)以每秒1个单位长度的速度匀速向点D运动.点P、Q同时出发,同时停止,设运动时间为t秒,当t=2秒时.(Ⅰ)求点D的坐标,并直接写出t的取值范围;(Ⅱ)连接AQ并延长交x轴于点E,把AE沿AD翻折交CD延长线于点F,连接EF,则△AEF的面积S是否随t的变化而变化?若变化,求出S与t的函数关系式;若不变化,求出S的值.(Ⅲ)在(Ⅱ)的条件下,t为何值时,PQ∥AF?25.(2014•绍兴)如图,在平面直角坐标系中,直线l平行x轴,交y轴于点A,第一象限内的点B在l上,连结OB,动点P满足∠APQ=90°,PQ交x轴于点C.(1)当动点P与点B重合时,若点B的坐标是(2,1),求PA的长.(2)当动点P在线段OB的延长线上时,若点A的纵坐标与点B的横坐标相等,求PA:PC的值.(3)当动点P在直线OB上时,点D是直线OB与直线CA的交点,点E是直线CP与y轴的交点,若∠ACE=∠AEC,PD=2OD,求PA:PC的值.26.(2014•徐州模拟)如图,矩形ABCD的边AB=6cm,BC=4cm,点F在DC上,DF=2cm.动点M、N分别从点D、B同时出发,沿射线DA、线段BA向点A的方向运动(点M可运动到DA的延长线上),当动点N运动到点A时,M、N两点同时停止运动.连接FM、FN,当F、N、M不在同一直线时,可得△FMN,再连接△FMN三边的中点得△PQW.设动点M、N的速度都是1cm/s,M、N运动的时间为ts.(1)试说明△FMN∽△QWP;(2)在点M运动的过程中,①当t为何值时,线段MN最短?并求出此时MN的长.②当t为何值时,△PQW是直角三角形?相似压轴题627.(2014•长春一模)如图,在Rt△ABC中,∠ACB=90°,AC=8cm,AB=10cm.点P从点A出发,以5cm/s的速度从点A运动到终点B;同时,点Q从点C出发,以3cm/s的速度从点C运动到终点B,连结PQ;过点P作PD⊥AC交AC于点D,将△APD沿PD翻折得到△A′PD,以A′P和PB为邻边作▱A′PBE,A′E交射线BC于点F,交射线PQ于点G.设▱A′PBE与四边形PDCQ重叠部分图形的面积为Scm2,点P的运动时间为ts.(1)当t为何值时,点A′与点C重合;(2)用含t的代数式表示QF的长;(3)求S与t的函数关系式;(4)请直接写出当射线PQ将▱A′PBE分成的两部分图形的面积之比是1:3时t的值.28.(2014•定州市三模)如图,M为等腰△ABD的底AB的中点,过D作DC∥AB,连结BC;AB=8cm,DM=4cm,DC=1cm,动点P自A点出发,在AB上匀速运动,动点Q自点B出发,在折线BC﹣CD上匀速运动,速度均为1cm/s,当其中一个动点到达终点时,它们同时停止运动,设点P运动t(s)时,△MPQ的面积为S(不能构成△MPQ的动点除外).(1)t(s)为何值时,点Q在BC上运动,t(s)为何值时,点Q在CD上运动;(2)求S与t之间的函数关系式;(3)当t为何值时,S有最大值,最大值是多少?(4)当点Q在CD上运动时,直接写出t为何值时,△MPQ是等腰三角形.29.(2013•宁波模拟)如图:梯形ABCD中,AD∥BC,∠ABC=90°,AD=9,BC=12,AB=6,在线段BC上任取一点P,连接DP,作射线PE⊥DP,PE与直线AB交于点E.(1)试确定当CP=3时,点E的位置;(2)若设CP=x,BE=y,试写出y关于自变量x的函数关系式.30.(2012•南通)如图△ABC中,AB=AC=10厘米,BC=12厘米,D是BC的中点,点P从B出发,以a厘米/秒(a>0)的速度沿BA匀速向点A运动,点Q同时以1厘米/秒的速度从D出发,沿DB匀速向点B运动,其中一个动点到达端点时,另一个动点也随之停止运动,设它们运动的时间为t秒.(1)若a=2,△BPQ∽△BDA,求t的值;(2)设点M在AC上,四边形PQCM为平行四边形.①若a=,求PQ的长;②是否存在实数a,使得点P在∠ACB的平分线上?若存在,请求出
本文标题:2015年09月13日的初中数学组卷(相似压轴题)
链接地址:https://www.777doc.com/doc-3647763 .html