您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 经营企划 > 初中数学九年级下册第二十六章二次函数知识点总结及
-1-新课标人教版初中数学九年级下册第二十六章《二次函数》知识点总结及精品试题第一部分基础知识1.定义:一般地,如果cbacbxaxy,,(2是常数,)0a,那么y叫做x的二次函数.2.二次函数2axy的性质(1)抛物线2axy的顶点是坐标原点,对称轴是y轴.(2)函数2axy的图像与a的符号关系.①当0a时抛物线开口向上顶点为其最低点;②当0a时抛物线开口向下顶点为其最高点.(3)顶点是坐标原点,对称轴是y轴的抛物线的解析式形式为2axy)(0a.3.二次函数cbxaxy2的图像是对称轴平行于(包括重合)y轴的抛物线.4.二次函数cbxaxy2用配方法可化成:khxay2的形式,其中abackabh4422,.5.二次函数由特殊到一般,可分为以下几种形式:①2axy;②kaxy2;③2hxay;④khxay2;⑤cbxaxy2.6.抛物线的三要素:开口方向、对称轴、顶点.①a的符号决定抛物线的开口方向:当0a时,开口向上;当0a时,开口向下;a相等,抛物线的开口大小、形状相同.②平行于y轴(或重合)的直线记作hx.特别地,y轴记作直线0x.7.顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同.8.求抛物线的顶点、对称轴的方法(1)公式法:abacabxacbxaxy442222,∴顶点是),(abacab4422,对称轴是直线abx2.(2)配方法:运用配方的方法,将抛物线的解析式化为khxay2的形式,得到顶点为(h,k),对称轴是直线-2-hx.(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失.9.抛物线cbxaxy2中,cba,,的作用(1)a决定开口方向及开口大小,这与2axy中的a完全一样.(2)b和a共同决定抛物线对称轴的位置.由于抛物线cbxaxy2的对称轴是直线abx2,故:①0b时,对称轴为y轴;②0ab(即a、b同号)时,对称轴在y轴左侧;③0ab(即a、b异号)时,对称轴在y轴右侧.(3)c的大小决定抛物线cbxaxy2与y轴交点的位置.当0x时,cy,∴抛物线cbxaxy2与y轴有且只有一个交点(0,c):①0c,抛物线经过原点;②0c,与y轴交于正半轴;③0c,与y轴交于负半轴.以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在y轴右侧,则0ab.10.几种特殊的二次函数的图像特征如下:函数解析式开口方向对称轴顶点坐标2axy当0a时开口向上当0a时开口向下0x(y轴)(0,0)kaxy20x(y轴)(0,k)2hxayhx(h,0)khxay2hx(h,k)cbxaxy2abx2(abacab4422,)11.用待定系数法求二次函数的解析式(1)一般式:cbxaxy2.已知图像上三点或三对x、y的值,通常选择一般式.(2)顶点式:khxay2.已知图像的顶点或对称轴,通常选择顶点式.(3)交点式:已知图像与x轴的交点坐标1x、2x,通常选用交点式:21xxxxay.-3-12.直线与抛物线的交点(1)y轴与抛物线cbxaxy2得交点为(0,c).(2)与y轴平行的直线hx与抛物线cbxaxy2有且只有一个交点(h,cbhah2).(3)抛物线与x轴的交点二次函数cbxaxy2的图像与x轴的两个交点的横坐标1x、2x,是对应一元二次方程02cbxax的两个实数根.抛物线与x轴的交点情况可以由对应的一元二次方程的根的判别式判定:①有两个交点0抛物线与x轴相交;②有一个交点(顶点在x轴上)0抛物线与x轴相切;③没有交点0抛物线与x轴相离.(4)平行于x轴的直线与抛物线的交点同(3)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为k,则横坐标是kcbxax2的两个实数根.(5)一次函数0knkxy的图像l与二次函数02acbxaxy的图像G的交点,由方程组cbxaxynkxy2的解的数目来确定:①方程组有两组不同的解时l与G有两个交点;②方程组只有一组解时l与G只有一个交点;③方程组无解时l与G没有交点.(6)抛物线与x轴两交点之间的距离:若抛物线cbxaxy2与x轴两交点为0021,,,xBxA,由于1x、2x是方程02cbxax的两个根,故acxxabxx2121,aaacbacabxxxxxxxxAB444222122122121第二部分典型习题1.抛物线y=x2+2x-2的顶点坐标是(D)A.(2,-2)B.(1,-2)C.(1,-3)D.(-1,-3)2.已知二次函数cbxaxy2的图象如图所示,则下列结论正确的是(C)A.ab>0,c>0B.ab>0,c<0C.ab<0,c>0D.ab<0,c<0-4-第2,3题图第4题图3.二次函数cbxaxy++=2的图象如图所示,则下列结论正确的是(D)A.a>0,b<0,c>0B.a<0,b<0,c>0C.a<0,b>0,c<0D.a<0,b>0,c>04.如图,已知中,BC=8,BC上的高,D为BC上一点,,交AB于点E,交AC于点F(EF不过A、B),设E到BC的距离为,则的面积关于的函数的图象大致为(D)2482,484EFxEFxyxx5.抛物线322xxy与x轴分别交于A、B两点,则AB的长为4.6.已知二次函数11)(2k2--+=xkxy与x轴交点的横坐标为1x、2x(21xx<),则对于下列结论:①当x=-2时,y=1;②当2xx>时,y>0;③方程011)(22=-+xkkx有两个不相等的实数根1x、2x;④11<x,12>-x;⑤22114kxxk+-=,其中所有正确的结论是①③④(只需填写序号).7.已知直线02bbxy与x轴交于点A,与y轴交于点B;一抛物线的解析式为cxbxy102.(1)若该抛物线过点B,且它的顶点P在直线bxy2上,试确定这条抛物线的解析式;(2)过点B作直线BC⊥AB交x轴交于点C,若抛物线的对称轴恰好过C点,试确定直线bxy2的解析式.解:(1)102xy或642xxy将0)b(,代入,得cb.顶点坐标为21016100(,)24bbb,由题意得21016100224bbbb,解得1210,6bb.(2)22xy8.有一个运算装置,当输入值为x时,其输出值为y,且y是x的二次函数,已知输入值为2,0,1时,相应的输出值分别为5,3,4.(1)求此二次函数的解析式;-5-第9题(2)在所给的坐标系中画出这个二次函数的图象,并根据图象写出当输出值y为正数时输入值x的取值范围.解:(1)设所求二次函数的解析式为cbxaxy2,则43005)2()2(22cbacbacba,即1423babac,解得321cba故所求的解析式为:322xxy.(2)函数图象如图所示.由图象可得,当输出值y为正数时,输入值x的取值范围是1x或3x.9.某生物兴趣小组在四天的实验研究中发现:骆驼的体温会随外部环境温度的变化而变化,而且在这四天中每昼夜的体温变化情况相同.他们将一头骆驼前两昼夜的体温变化情况绘制成下图.请根据图象回答:⑴第一天中,在什么时间范围内这头骆驼的体温是上升的?它的体温从最低上升到最高需要多少时间?⑵第三天12时这头骆驼的体温是多少?⑶兴趣小组又在研究中发现,图中10时到22时的曲线是抛物线,求该抛物线的解析式.解:⑴第一天中,从4时到16时这头骆驼的体温是上升的它的体温从最低上升到最高需要12小时⑵第三天12时这头骆驼的体温是39℃⑶22102421612xxxy10.已知抛物线4)334(2xaaxy与x轴交于A、B两点,与y轴交于点C.是否存在实数a,使得△ABC为直角三角形.若存在,请求出a的值;若不存在,请说明理由.解:依题意,得点C的坐标为(0,4).设点A、B的坐标分别为(1x,0),(2x,0),yOx-6-由04)334(2xaax,解得31x,ax342.∴点A、B的坐标分别为(-3,0),(a34,0).∴|334|aAB,522OCAOAC,22OCBOBC224|34|a.∴9891693432916|334|2222aaaaaAB,252AC,1691622aBC.〈ⅰ〉当222BCACAB时,∠ACB=90°.由222BCACAB,得)16916(259891622aaa.解得41a.∴当41a时,点B的坐标为(316,0),96252AB,252AC,94002BC.于是222BCACAB.∴当41a时,△ABC为直角三角形.〈ⅱ〉当222BCABAC时,∠ABC=90°.由222BCABAC,得)16916()98916(2522aaa.解得94a.当94a时,3943434a,点B(-3,0)与点A重合,不合题意.〈ⅲ〉当222ABACBC时,∠BAC=90°.由222ABACBC,得)98916(251691622aaa.解得94a.不合题意.综合〈ⅰ〉、〈ⅱ〉、〈ⅲ〉,当41a时,△ABC为直角三角形.11.已知抛物线y=-x2+mx-m+2.-7-(1)若抛物线与x轴的两个交点A、B分别在原点的两侧,并且AB=5,试求m的值;(2)设C为抛物线与y轴的交点,若抛物线上存在关于原点对称的两点M、N,并且△MNC的面积等于27,试求m的值.解:(1)A(x1,0),B(x2,0).则x1,x2是方程x2-mx+m-2=0的两根.∵x1+x2=m,x1·x2=m-2<0即m<2;又AB=∣x1—x2∣=121245xxxx2(+),∴m2-4m+3=0.解得:m=1或m=3(舍去),∴m的值为1.(2)M(a,b),则N(-a,-b).∵M、N是抛物线上的两点,∴222,2.amambamamb①②①+②得:-2a2-2m+4=0.∴a2=-m+2.∴当m<2时,才存在满足条件中的两点M、N.∴2am.这时M、N到y轴的距离均为2m,又点C坐标为(0,2-m),而S△MNC=27,∴2×12×(2-m)×2m=27.∴解得m=-7.12.已知:抛物线taxaxy++=42与x轴的一个交点为A(-1,0).(1)求抛物线与x轴的另一个交点B的坐标;(2)D是抛物线与y轴的交点,C是抛物线上的一点,且以AB为一底的梯形ABCD的面积为9,求此抛物线的解析式;(3)E是第二象限内到x轴、y轴的距离的比为5∶2的点,如果点E在(2)中的抛物线上,且它与点A在此抛物线对称轴的同侧,问:在抛物线的对称轴上是否存在点P,使△APE的周长最小?若存在,求出点P的坐标;若不存在,请说明理由.解法一:(1)依题意,抛物线的对称轴为x=-2.∵抛物线与x轴的一个交点为A(-1,0),∴由抛物线的对称性,可得抛物线与x轴的另一个交点B的坐标为(-3,0).NMCxyO-8-(2)∵抛物线taxaxy++=42与x轴
本文标题:初中数学九年级下册第二十六章二次函数知识点总结及
链接地址:https://www.777doc.com/doc-3658757 .html