您好,欢迎访问三七文档
除盐水除盐水:是指利用各种水处理工艺,除去悬浮物、胶体和无机的阳离子、阴离子等水中杂质后,所得到的成品水。除盐水并不意味着水中盐类被全部去除干净,由于技术方面的原因以及制水成本上的考虑,根据不同用途,允许除盐水含有微量杂质。除盐水中杂质越少,水纯度越高。除盐水工艺流程图机械过滤器机械过滤器主要技术参数:工作压力:0.05MPa~0.6MPa工作温度:5℃~40℃(特殊温度可定做)单机流量:0.5m3/h~80m3/h操作方式:手动或自动控制过滤速度:5m3/h~12m3/h,最大15m3/h产品规格:Φ223~Φ3000筒体材质:304、316L、Q235衬胶或玻涂环氧编辑本段简介:机械过滤器也称为压力式过滤器.是纯水制备前期预处理、水净化系统的重要组成部分.材质有钢制衬胶或不锈钢,根据过滤介质的不同分为天然石英砂过滤器、多介质过滤器、活性炭过滤器、锰砂过滤器等,根据进水方式可分为单流式过滤器、双流式过滤器,根据实际情况可联合使用也可以单独使用。絮凝剂混凝剂添加:主要是除去水中微小粒径的悬浮物胶体。因为这些微小的颗粒在水中不会受重力的作用而沉降,也难在后续的过滤器中去除,因而需要对原水进行混凝处理。它是通过在原水中投加混凝剂,使之与水中悬浮物及胶体生成较大絮片,然后通过多介质过滤器过滤去除。当原水中铁的含量小于0.3mg/L、悬浮物的含量小于20mg/L时,预处理可以不采用此装置。当水中悬浮物及胶体物质的含量比较高时,一般需要使用混凝剂添加装置。机械过滤器原理机械过滤器是利用一种或几种过滤介质,在一定的压力下,使原液通过该介质,去除杂质,从而达到过滤的目的。其内装的填料一般为:石英砂、无烟煤、颗粒多孔陶瓷、锰砂等,机械过滤器主要是利用填料来降低水中浊度,截留除区水中悬浮物、有机物、胶质颗粒、微生物、氯嗅味及部分重金属离子,使给水得到净化的水处理传统方法之一。活性炭过滤器活性炭的吸附原理是:在其颗粒表面形成一层平衡的表面浓度,再把有机物质杂质吸附到活性炭颗粒内,使用初期的吸附效果很高。但时间一长,活性炭的吸附能力会不同程度地减弱,吸附效果也随之下降。如果水族箱中水质混浊,水中有机物含量高,活性炭很快就会丧失过滤功能。所以,活性炭应定期清洗或更换。在水质预处理系统中,活性炭过滤器能够吸附前级过滤中无法去除的余氯以防止后级反渗透膜受其氧化降解,同时还吸附从前级泄漏过来的小分子有机物等污染性物质,对水中异味、胶体及色素、重金属离子等有较明显的吸附去除作用,还具有降低COD的作用。可以进一步降低RO进水的SDI值,保证SDI5,TOC2.Oppm。精密过滤器精密过滤器(又称作保安过滤器),筒体外壳一般采用不锈钢材质制造,内部采用PP熔喷、线烧、折叠、钛滤芯、活性炭滤芯等管状滤芯作为过滤元件,根据不同的过滤介质及设计工艺选择不同的过滤元件,以达到出水水质的要求。机体也可选用快装式,以方便快捷的更换滤芯及清洗。精密过滤器其作用是截留原水中的大于5微米的颗粒,以保证反渗透膜不被大颗粒的悬浮物划伤。因为反渗透膜的厚度约为10微米左右,原水中较大的颗粒经高压泵加速后极易划伤反渗透膜表面的脱盐表皮层或可能击穿反渗透膜组件,因而一般反渗透设备前都要安装5微米精密过滤器。采用精密过滤器对进水中残留的悬浮物、非曲直粒物及胶体等物质去除,使RO反渗透设备运行更安全、更可靠。杀菌灭藻剂与阻垢剂杀菌灭藻剂:对于原水中存在有机物和细菌微生物的水源,一般情况下用户常采用加氧化性介质进行杀除,如:次氯酸钠、液氯、二氧化氯等。对于有些地表性水源,长期投加上述介质,发现生物抗药性使得杀菌效果很不理想。目前,非氧化性杀菌剂,杀除效果更持久,且可节省后续还原剂的投加费用。添加阻垢剂:可以延缓盐晶体成长来推迟沉淀过程,采用此方法也可防止反渗透的结垢污染。但是由于钙镁离子仍然存在于水中,反渗透出水的钙镁离子会比使用软化要高,而采用加药阻垢的方式较易实现自动化控制,且设备简单成本较低。另外使用阻垢剂还可以减低硅沉淀,而软化则不能,这一点非常适合地下水水源处理。软化设施的成本与流量成正比关系,而阻垢剂添加设施的成本与流量关系不大,因此,双级反渗透和器型系统,多采用阻垢剂添加系统反渗透反渗透又称逆渗透,一种以压力差为推动力,从溶液中分离出溶剂的膜分离操作。因为它和自然渗透的方向相反,故称反渗透。根据各种物料的不同渗透压,就可以使大于渗透压的反渗透法达到分离、提取、纯化和浓缩的目的。反渗透基本原理:把相同体积的稀溶液(如淡水)和浓液(如海水或盐水)分别置于一容器的两侧,中间用半透膜阻隔,稀溶液中的溶剂将自然的穿过半透膜,向浓溶液侧流动,浓溶液侧的液面会比稀溶液的液面高出一定高度,形成一个压力差,达到渗透平衡状态,此种压力差即为渗透压渗透压的大小决定于浓液的种类,浓度和温度与半透膜的性质无关。若在浓溶液侧施加一个大于渗透压的压力时,浓溶液中的溶剂会向稀溶液流动,此种溶剂的流动方向与原来渗透的方向相反,这一过程称为反渗透。膜系统常见污染问题及控制:反渗透系统在日常的运行中,难免会出现系统的无机物结垢、胶体颗粒物的沉积、微生物的滋生、化学污染以及其它问题,这些因素影响着系统安全稳定的运行。这些因素影响着系统安全稳定的运行。下面主要阐述膜系统在日常中出现的问题及控制方法。无机物的结垢在水中存在Ca2+、Mg2+、Ba2+、Sr2+、CO32-、SO42-、PO43-、SiO2等离子。在一般的情况下是不会造成无机物结垢,但是在反渗透系统中,由于源水一般浓缩4倍,并且pH也有较大的提高,因此比较难溶解的物质就会沉积,在膜表面形成硬垢,导致系统压力升高、产水量下降,严重的还会造成膜表面的损伤,使系统脱盐率降低。在反渗透系统的结垢中,以碳酸盐垢为主,大多数地表水和地下水中的CaCO3几乎呈饱和状态,由下式表示CaCO3化学平衡:Ca2++HCO3–---H++CaCO3从化学平衡式可以看出,要抑制CaCO3的结垢,有几种途径:降低Ca2+的含量降低了Ca2+含量,可以使化学平衡向左侧移动,不利于形成CaCO3垢。达到这种目的的方法有:离子交换软化法、石灰软化法、电渗析、纳滤等法,他们都能有效地降低的Ca2+含量,从而达到抑制钙垢的生成。Ca2+的增溶主要是以增加Ca2+的溶解度,从而降低结垢的风险。方法:添加螯合剂、阻垢剂,增加Ca2+的溶解度,使平衡向左移动。胶体、颗粒物沉积胶体、颗粒物污染是比较常见的反渗透系统污染。水中大量存在粘泥、胶体硅、金属的氧化物及有机质等颗粒物,在反渗透系统预处理中可以将源水中的这些污染源控制在一定程度,不致使对系统短期运行造成一定的影响。但由于系统长时间的运行预处理处理效果不理想、预处理反冲洗不彻底、操作人员的日常操作不到位等原因,都会造成系统胶体、颗粒物的污染。针对胶体污染,通过淤泥密度指数(SiltDensityIndex,SDI)来衡量。SDI数值反应了在规定时间内,孔径为0.45um测试膜片被测试给水中的淤泥、胶体、黏土、硅胶体、铁的氧化物、腐植质等污染物堵塞的比率和污染程度。测试如下:首先应充分排除过滤池中的空气压力,使给水以30psi的恒定压力通过直径为Φ47mm、孔径为0.45um的测试滤膜后开始测定:首先测定开始通过滤膜的500毫升水所需要的时间T0;在使水连续通过滤膜15分钟(T)后,再次测得通过滤膜的500毫升水所需要的时间T1;在取得以上3个时间数据之后,由此可以计算出该水源的SDI值:即SDI=(1-T0/T1)×100/T在实际中,当T1为T0的四倍时,SDI为5;在SDI为6.7时,水会完全堵塞测试膜,而无法取得时间数据T1,在这种情况下需要对反渗透预处理系统进行调整,使其SDI值降至5.0以下。SDI值不能反应完全反渗透系统的污堵情况,因为SDI仪测试是死端过滤,而反渗透系统是错流过滤。为了防止反渗透系统胶体污染,我们要求进水SDI值小于5(最好是小于3),这样有利于系统长期安全运行。降低反渗透进水胶体、颗粒物污染最有效的方法:合适的预处理(锰砂过滤、多介质过滤、活性炭过滤、超滤、微滤等等);添加胶体分散剂;系统预防性的清洗;微生物的污染自来水一般通过控制余氯来抑制微生物的滋生,但是余氯有较强的氧化性,它能使反渗透膜表面氧化,影响膜的寿命和产水水质,因此反渗透系统运行对余氯要求非常严格(0.1),这给微生物的生存繁殖提供了有利的环境。微生物生长及排泄出的酸性粘泥会堵塞膜的微孔,致使压差上升,给系统的安全运行埋下了严重的安全隐患。微生物的污染也是最常见的污染,经过大量的元件解剖及污染物分析实验,大多数污染是由微生物的繁殖引起的。微生物污染过程主要有以下阶段:第一阶段腐殖质、聚糖至于其他微生物代谢产物等大分子在膜面上的吸附,形成具备微生物生存条件的生物膜;第二阶段进水微生物中黏附速度快的细胞形成初期黏附过程(生物膜生长缓慢);第三阶段后续大量菌种的黏附,特别是EPS(细胞聚合物,ExtracelluarPolymers。它黏附在膜面上的细胞体包裹起来,形成黏度很大的税和凝胶层,进一步增强了污垢和膜的结合力)的形成,加剧了微生物的繁殖和群聚;第四阶段生物污染的最终形成阶段,生物膜的生长和脱除达到平衡。造成膜的不可逆的堵塞氏过滤阻力上升,膜通量下降。抑制反渗透系统微生物繁殖的方法:反渗透进水微生物的控制。通过源水的菌藻控制(一般通过控制余氯),尽量减少预处理的死角,防止微生物繁殖;反渗透系统微生物控制。通过连续式或间歇式加入非氧化性且对膜没有影响的杀菌剂,可以有效地控制和杀死反渗透系统滋生的微生物,再通过浓水将其带出系统。化学污染化学污染是指进水中某些物质与膜面发生化学反应,从而引起沉积、沉淀以及表面的非常规老化,使膜表面发生污染或使膜的性能变差。常见的情况有:预处理时絮凝剂选用不当;运行时阻垢剂的选用不当;清洗时清洗药剂选用不当;预处理控制不严格,致使进水中带入对膜有危害的物质(如:余氯的超标导致膜面活性层的氧化)。化学污染处理主要从系统预处理的完善及操作人员技术水平的提高来进行预防,污染一旦产生很难清洗或者很难使膜的性能恢复。除了上述几种常见的问题,我们也会碰到沙砾、活性进入膜系统造成膜的划伤,这些主要是预处理的缺陷或者操作的失误造成,这些也应该引起足够的重视。清洗处理RO清洗用保安过滤器:通常采用孔径为5至10微米的过滤器以除去清洗出来的污垢。RO清洗箱加热器或冷却器:清洗的最佳温度是35至45℃。应注意在再循环期间RO清洗泵会产生热量。RO清洗箱混合器:尽管一些设计者设计时考虑仅仅通过使用RO清洗泵循环回流并缓慢加入药品的方法来配制药液,但我们还是建议使用混合器以使药液配制更加均匀。仪器仪表:清洗系统仪器仪表应包括流量表、温度表、压力表和清洗箱液位表。取样点:应在RO清洗泵出口和浓水侧循环回流管上加装取样阀从而可测得PH值和TDS值。产水侧回流管:在清洗过程中,可能会有少量的清洗液透过膜元件,因此建议在产水侧安装一根回流管。RO清洗步骤可能会根据情况的不同而变化。每段清洗所需的时间为4至8小时,基本的清洗步骤是:1.用给水或产品水进行低压冲洗,以除去设备运行时的浓水和污染物。2.按制造商的说明配制清洗液。3.将清洗液加入到第一段中并保持60分钟,此时你可能需要调节流量以使流量缓慢增加,防止清除出来的污染物将给水通道堵塞。在将清洗液回流到RO清洗箱之前应排放掉从系统中顶出的水和刚开始的20%的清洗液。当PH值变化超过0.5单位时,重新调到目标值。4.可选择浸泡和再循环步骤。浸泡时间为1小时至一夜,视制造商的建议而定。但是应该注意保持正确的温度和PH值,而且这也会增加膜与清洗药品的接触时间。5.用产品水进行低压冲洗,以除去在清洗系统和反渗透系统中的所有残存药品。6.一旦某套设备的所有各段均清洗完成后,该RO装置可以重新投入运行。阳离子交换机强酸性阳树脂对水中各种阳离子的吸附顺序为:Fe3+Al3+Ca2+Mg2+Na+H+.;由此可知,水中金属离子Na+被吸附的能力最弱,所以当离子交换时树脂层的各种离子吸附
本文标题:除盐水
链接地址:https://www.777doc.com/doc-3706827 .html