您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 企业财务 > 成都市东湖中学九上数学《二次函数》应用专题――最值问题导练
1成都市东湖中学九上数学《二次函数》应用专题——最值问题导练1、求下列二次函数的最大值或最小值:⑴y=-x2+2x-3;⑵y=x2+4x引例:(1)请用长20米的篱笆设计一个矩形的菜园。(2)怎样设计才能使矩形菜园的面积最大?例1、如图,用长20米的篱笆围成一个一面靠墙的长方形的菜园,设菜园的宽为x米,面积为y平方米。(1)求y与x的函数关系式及自变量的取值范围;(2)怎样围才能使菜园的面积最大?最大面积是多少?练1、如图,在一面靠墙的空地上用长为24米的篱笆,围成中间隔有二道篱笆的长方形花圃,设花圃的宽AB为x米,面积为S平方米。(1)求S与x的函数关系式及自变量的取值范围;(2)当x取何值时所围成的花圃面积最大,最大值是多少?(3)若墙的最大可用长度为8米,则求围成花圃的最大面积。例2、如图,在一个直角三角形的内部作一个矩形ABCD,其中AB和AD分别在两直角边上.(1).设矩形的一边AB=xm,那么AD边的长度如何表示?(2).设矩形的面积为ym2,当x取何值时,y的最大值是多少?2引伸拓展:如图,在一个直角三角形的内部作一个矩形ABCD,其顶点A和点D分别在两直角边上,BC在斜边上.1).设矩形的一边BC=xm,那么AB边的长度如何表示?2).设矩形的面积为ym2,当x取何值时,y的最大值是多少?例3、某建筑物的窗户如图所示,它的上半部是半圆,下半部是矩形,制造窗框的材料总长(图中所有的黑线的长度和)为15m.当x等于多少时,窗户通过的光线最多?此时,窗户的面积是多少?例4、有一根直尺的短边长2cm,长边长10cm,还有一块锐角为45°的直角三角形纸板,其中直角三角形纸板的斜边长为12cm.按图—1的方式将直尺的短边DE放置在与直角三角形纸板的斜边AB上,且点D与点A重合.若直尺沿射线AB方向平行移动,如图—2,设平移的长度为x(cm),直尺和三角形纸板的重叠部分(图中阴影部分)的面积为Scm2).(1)当x=0时,S=_____________;当x=10时,S=______________;(2)当0<x≤4时,如图14—2,求S与x的函数关系式;3(3)当6<x<10时,求S与x的函数关系式;(4)请你作出推测:当x为何值时,阴影部分的面积最大?并写出最大值.例5、如图,规格为60cm×60cm的正方形地砖在运输过程中受损,断去一角,量得AF=30cm,CE=45cm。现准备从五边形地砖ABCEF上截出一个面积为S的矩形地砖PMBN。(1)设BN=x,BM=y,请用含x的代数式表示y,并写出x的取值范围;(2)请用含x的代数式表示S,并在给定的直角坐标系内画出该函数的示意图;(3)利用函数图象回2答:当x取何值时,S有最大值?最大值是多少?4例6、在矩形ABCD中,AB=6cm,BC=12cm,点P从点A出发,沿AB边向点B以1cm/秒的速度移动,同时,点Q从点B出发沿BC边向点C以2cm/秒的速度移动。如果P、Q两点在分别到达B、C两点后就停止移动,回答下列问题:(1)运动开始后第几秒时,△PBQ的面积等于8cm2(2)设运动开始后第t秒时,五边形APQCD的面积为Scm2,写出S与t的函数关系式,并指出自变量t的取值范围;t为何值时S最小?求出S的最小值。练习:如图,在平面直角坐标系中,四边形OABC为菱形,点C的坐标为(4,0),∠AOC=60°,垂直于x轴的直线l从y轴出发,沿x轴正方向以每秒1个单位长度的速度运动,设直线l与菱形OABC的两边分别交于点M、N(点M在点N的上方).(1)求A、B两点的坐标;(2)设△OMN的面积为S,直线l运动时间为t秒(0≤t≤6),试求S与t的函数表达式;(3)在题(2)的条件下,t为何值时,S的面积最大?最大面积是多少?
本文标题:成都市东湖中学九上数学《二次函数》应用专题――最值问题导练
链接地址:https://www.777doc.com/doc-3708406 .html