您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 圆中切线证明综合题及答案
12.11如图11,PB为⊙O的切线,B为切点,直线PO交⊙O于点E,F,过点B作PO的垂线BA,垂足为点D,交⊙O于点A,延长AO与⊙O交于点C,连接BC,AF.(1)求证:直线PA为⊙O的切线;(2)试探究线段EF,OD,OP之间的等量关系,并加以证明;(3)若BC=6,tan∠F=12,求cos∠ACB的值和线段PE的长.【答案】解:(1)证明:如下图,连接OB,∵PB是⊙O的切线,∴∠PBO=90°.∵OA=OB,BA⊥PO于D,∴AD=BD,∠POA=∠POB.又∵PO=PO,∴△PAO≌△PBO.∴∠PAO=∠PBO=90°.∴直线PA为⊙O的切线.(2)EF2=4OD·OP.证明:∵∠PAO=∠PDA=90°,∴∠OAD+∠AOD=90°,∠OPA+∠AOP=90°.∴∠OAD=∠OPA.∴△OAD∽△OPA.∴ODOA=OAOP,即OA2=OD·OP.又∵EF=2OA,∴EF2=4OD·OP.(3)∵OA=OC,AD=BD,BC=6,∴OD=12BC=3.设AD=x,∵tan∠F=12,∴FD=2x,OA=OF=2x-3.在Rt△AOD中,由勾股定理,得(2x-3)2=x2+32.解之得,x1=4,x2=0(不合题意,舍去).AD=4,OA=2x-3=5.∵AC是⊙O的直径,∴∠ABC=90°.而AC=2OA=10,BC=6,∴cos∠ACB=610=35.∵OA2=OD·OP,∴3(PE+5)=25.∴PE=103.12、12如图,AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB的延长线于F.切点为G,连接AG交CD于K.(1)求证:KE=GE;ACBDEFOP(2)若2KG=KD·GE,试判断AC与EF的位置关系,并说明理由;(3)在(2)的条件下,若sinE=35,AK=23,求FG的长.考点:切线的性质;勾股定理;垂径定理;圆周角定理;相似三角形的判定与性质;解直角三角形。解答:解:(1)如答图1,连接OG.∵EG为切线,∴∠KGE+∠OGA=90°,∵CD⊥AB,∴∠AKH+∠OAG=90°,又OA=OG,∴∠OGA=∠OAG,∴∠KGE=∠AKH=∠GKE,∴KE=GE.(2)AC∥EF,理由为:连接GD,如答图2所示.∵KG2=KD•GE,即=,∴=,又∠KGE=∠GKE,∴△GKD∽△EGK,∴∠E=∠AGD,又∠C=∠AGD,∴∠E=∠C,∴AC∥EF;(3)连接OG,OC,如答图3所示.sinE=sin∠ACH=,设AH=3t,则AC=5t,CH=4t,∵KE=GE,AC∥EF,∴CK=AC=5t,∴HK=CK﹣CH=t.在Rt△AHK中,根据勾股定理得AH2+HK2=AK2,即(3t)2+t2=()2,解得t=.设⊙O半径为r,在Rt△OCH中,OC=r,OH=r﹣3t,CH=4t,由勾股定理得:OH2+CH2=OC2,即(r﹣3t)2+(4t)2=r2,解得r=t=.∵EF为切线,∴△OGF为直角三角形,在Rt△OGF中,OG=r=,tan∠OFG=tan∠CAH==,∴FG===.
本文标题:圆中切线证明综合题及答案
链接地址:https://www.777doc.com/doc-3715961 .html