您好,欢迎访问三七文档
药物代谢动力学的研究摘要:超高效液相色谱(UPLC)和PBPK模型在药物代谢动力学研究发挥的重要的作用。UPLC是一种柱效高、发展前景好的液相色谱技术,是一种基于机制的数学模型;PBPK用于模拟化学物质在体内的分布代谢更方面对药物动力学的研究。药物代谢动力学的更深研究在药物研发中起到了重要意义及作用。关键词:药物代谢动力学UPLCPBPK模型药物研发Abstract:thehighperformanceliquidchromatography(UPLC)andPBPKmodelinthestudyofthepharmacokineticplayanimportantrole.UPLCisacolumnefficiencyhigh,theprospectsofthedevelopmentofgoodperformanceliquidchromatography,isbasedonamathematicalmodelofthemechanism;PBPKusedforsimulationofthechemicalsubstancesinthebodyofmetabolicdistributedmoremedicinedynamicsresearch.Thepharmacokineticdeeperindrugdevelopmentresearchhasimportantsignificanceandrole.Keywords:PharmacokineticUPLCPBPKmodelDrugdevelopment前言:动力学的基本理论和方法已经渗透到生物药剂学,药物治疗学,临床药理学及毒理学等多学科领域中。药物代谢动力学是应用数学处理方法,定量描述药物及其他外源性物质在体内的动态变化规律,研究机体对药物吸收、分布、代谢和排泄等的处置以及所产生的药理学和毒理学意义;并且探讨药物代谢转化途径,确证代谢产物结构,研究代谢产物的药效或毒性;提供药物效应和毒性的靶器官,阐明药效或毒性的物质基础,弄清药物疗效和毒性与药物浓度的关系[1]。1、药物动力学的研究进展1.1群体药物动力学群体药物动力学是研究药物动力学群体参数的估算,药物动力学参数群体值不仅是临床用药所必需,而且有可能成为新药评价的一个必备参数。药物动力学参数群体值的估算有两种方法,一种是传统的二步法,另一种是近年来发展的一步法。后者亦名Nonmen程序法,它把药物动力学参数在患者身上的自身变异及患者间的变异全估算在内。根据变异值的大小也可预估一些生理、病理因素对药物动力学参数的影响。因而更具优越性,在个体化给药中,Nonmen常与Bayesian反馈法结合使用。1.2时辰药物动力学时辰药物动力学是指同一剂量在l天内不同时间给予时药物处置出现显著变异。如多数脂溶性药物的吸收,清晨比傍晚吸收更佳,另外象单硝酸异山梨酯在清晨服用时所导致的体位性低血压最为明显,同时达峰时间也较其他时间给药为短。一些疾病并非1天24小时机体均需要同等水平的药物,如心脏病患者在凌晨发病较多,若制成脉冲式给药,可产生预防作用;相反,如药物浓度始终维持在同一水平却容易带来耐药性,例如硝酸甘油和许多抗菌素类药物;再如只有当血浆中糖分较高时才需要较高的胰岛素。人们开始研究能够自动感知血糖水平,以调节胰岛素释放速率的智能给药装置。1.3手性药物的药物动力学机体内存在“手性环境”。药物在机体内部发生作用往往通过不同的立体构象,与受体等部位发生三维结合而产生作用。药物分子在立体构象上的差异会对其效应的特征及强度产生显著影响。有人发现头孢氨卡口服后只有D一型被吸收,且呈饱和性和竞争性,而L一型则抑制其吸收。S(一)布洛芬的血中浓度较高,除代谢方面的原因之外,与R(+)型在肾脏有较高的立体选择性排泄也有关。对普奈洛尔及华法林的药物动力学立体异构性研究表明,该两种药物在大鼠与人身上均表现出相反的立体选择性,药物动力学的参数变化反映了立体选择性综合作用的结果[2、4]。2、UPLC在药物代谢研究中的应用2.1UPLC的理论基础UPLC保持了HPLC的基本原理,其理论依据于范迪姆特(VanDeemter)经验方程:HETP=Adp+B/v+C(dp)2v式中,HETP为理论塔板高度,A为涡流扩散系数,dp为填料粒径,B为分子径向扩散系数,C为传质因子,v为流动相线速度。由该方程可以得出结论:颗粒度越小柱效越高,每个颗粒度尺寸有自己的最佳柱效的流速,更小的颗粒度使最高柱效点向更高流速(线速度)方向移动,而且有更宽的线速度范围。因此,降低颗粒度不但提高柱效,同时也提高速度。随色谱柱中装填固定相粒度dp的减小,色谱柱的理论塔板高度H也越小,色谱柱的柱效越高,并可获得更宽的线速度范围,达到分离分析的高速、高效和高灵敏度。UPLC采用了1-7µm颗粒度的色谱柱填料,增加了分析的通量、灵敏度及色谱峰容量,弥补传统HPLC的不足。2.2UPLC在药物代谢研究中的应用建立适合进行生物样品测定的分析方法是进行药代动力学各项研究的前提。药代动力学研究中生物样本的分析一般具有待测药物浓度低、取样量少、内源性杂质多、不易重复获得等特点,这就要求所采用的分析方法必须灵敏、专属、精确、可靠。目前生物样本常用的分析方法有:(1)色谱法;(2)免疫学方法;(3)微生物学方法。当今生物样本分析首选色谱法,如UPLC、超高效液相色谱-质谱联用技术(UPLC-MS/MS)等,这类方法应用最广,大约90%的药物测定都可以用色谱法来完成。作为一种高灵敏度的检测手段UPLC-MS/MS在药代动力学中得到越来越广泛的应用。UPLC特点是采用小粒径填料,可耐超高压,可显著改善色谱峰的分离度和检测灵敏度,同时大大缩短分析周期,特别适用于生物样本中微量复杂混合物的分离和高通量研究。UPLC与MS联用时,在离子源处相互竞争的化合物之间的离子抑制作用减弱,因而代谢产物的离子化率更高。UPLC相比HPLC具有更高的灵敏度,可以保证更低浓度的代谢产物被检出,帮助防止潜在的毒物继续停留在药物发现的进程中。UPLC与质谱联用可以减少代谢物的共流出,并提供更多数据信息,因此成为复杂体系分离分析以及化合物结构鉴定的良好平台,并已经成功应用于药物代谢动力学的研究[3]。3、生理药物代谢动力学模型(PBPK)3.1生理药物代谢动力学模型(PBPK)应用原理传统的药物代谢动力学模型称为房室模型,最初用于药物代谢的研究。它将复杂的药物转运过程简化为简单的一室、二室或三室结构,无论是最终确定的模型结构还是所使用的参数都是来自于实验数据,通过血药浓度-时间曲线判断法、残差平方和或加权残差平方和判断法、AIC判断法等方法确定房室数,再进行主要药物代谢动力学参数的估算,进而得到最适合某种特定药物的房室模型。因此,房室模型是“经验模型”或者说是“基于数据的模型”。与房室模型相比,生理药物代谢动力学模型(physiologicallybasedtoxicokineticmodel,PBPK模型)生理药物代谢动力学模型是根据现有的人类或者其他动物的解剖和生理知识及其生物化学数据建立,通过数学方法模拟化学物质在体内的吸收、分布、代谢和排泄过程,进而实现剂量外推和种间外推的过程。PBPK模型将药物或者毒物的复杂的吸收、分布、代谢、排泄过程简化为以生理学事实为基础的房室结构。模型中主要的结构是生物体组织(器官)、体液或者系统,其中的参数是基于解剖学和生理结构得到的。从这一意义上来讲,PBPK模型的结构已经不是基于特定的药物在体内的代谢过程,而是事先模拟建立的一种“机制模型”。因此,PBPK模型在模拟不同物质的吸收、分布、代谢、排泄方面有着更广阔的应用空间[5]。(2)部分PBPK模型,描述身体部分独立的器官(系统),如肠吸收模型、肝脏(代谢)模型。由于肠吸收是一个复杂的过程,在药理学领域,有些学者认为将其简单作为一个房室不能准确描述其中发生的复杂过程,因此,将其单独建模。但是在毒理学领域,一般不考虑复杂的肠吸收过程,而是将其作为一个黑箱处理,用一个房室代表。在建立整体PBPK模型时,需要依据哺乳动物一般的解剖学循环结构。其中,最大的问题是选择哪些组织(器官)、体液、系统作为模型的组成部分。在实际的建模过程中,主要包括以下几个部分:(1)核心组织(器官)、体液,包括血液、肝脏(主要代谢器官)、肾脏(主要排泄器官)等,几乎每一个PBPK模型都会包括这些结构。(2)与化学物质有关的组织,例如,其他消除该物质的组织(如肺和肠);染毒位置如皮肤(接触)、肺(吸入)、肠(口服);潜在可能发生反应的位置等。(3)对于毒物平衡、储存有影响的组织,如骨、脂肪、肌肉等。此外,为简化模型,还可以把一些组织分组,根据血液是否充分灌注,分为充分灌注组织和非充分灌注组织等;或者分为核心组织,快速和慢速平衡组织。总之,要根据必要和简化的原则,并且根据具体的化学物质来选择模型的基本组成。PBPK模型的参数包括两类:(1)生理参数,与化学物质无关,基于生理结构和过程,其主要参数包括体重、组织体积、心输出量、组织灌注速率、分输出量、肺泡通气量。(2)生化参数,基于物质在体内的动力学特性,其主要参数包括吸收速率、一级/二级速率常数、米氏常数、最大代谢速率、组织扩散系数、转运体活性参数。这类参数由实验获得,包括体内实验与体外实验。通过体内实验,即给实验动物通过不同途径给药,可以得到药时曲线与相应的参数等。而通过体外实验,如在体外系统(新鲜离体干细胞、微粒体、细胞液)进行,得到的代谢常数经过调整可以应用于动物整体的体内环境。而传统生理药物代谢动力学模型参数仅可以通过体内实验获得。在确定了模型结构和模型参数之后,对每个房室列出物质守恒微分方程,即用流入该房室的动脉血中该物质的浓度和流出该房室的静脉血中的浓度之差乘以该室的血流量,再加上该房室中该物质的生成项和消除项,等于该房室内该物质的瞬时变化量。因此,一个模型就简化为一个微分方程组,再利用计算软件求解。常用计算软件包括ACSL、BerkeleyMadonna、Matlab等,其中,Matlab在当前的PBPK模型文献中应用最多,且已有文献论述其在PBPK模型中应用的优越性。模型建立之后,还需要根据目的对模型进行灵敏度分析以及检验模型结构是否需要简化等。最后,要进行模型验证,即用与建模所用药物代谢动力学资料不同的另外一套数据来检验模型是否能够很好地预测同一物质在不同实验条件下的药物代谢动力学过程。如果不能通过验证,则需要进一步调整模型的结构[6]。3.2复合生理药物代谢动力学模型进入环境的物质大多数情况下不是以单一化学物质的形式存在,而是以多种物质共存的形式进入人体或者动物体。在体内药物代谢动力学和药效学之间的相互作用可以产生低于几种物质单独作用的毒性(拮抗作用),也可以大于各物质单独作用的毒性(协同作用)。因此,若明确多种物质产生的复合毒性就需要对复合化学物质在体内的相互作用进行研究。当前已经有PBPK模型对此进行模拟计算,其中,两种物质的相互作用是最基础的形式。将两种物质各自的PBPK模型在发生相互作用的器官(多为肝脏)进行耦合,建立两套公式,一套描述各自发生的吸收、分布、代谢、排泄过程,另一套描述二者之间的相互作用,进而得到复合的PBPK模型。三种或者更多物质的PBPK模型也根据这个基本原理建立[7,8]。El-Masri等[9]建立了复合PBPK模型,研究了毒死蜱和对硫磷在大鼠体内的毒理学相互作用,并且估计了联合作用的阈值。Alan等根据汞、砷、镉、铅对甲苯和苯代谢的影响,首先利用前人建立的重金属和苯、甲苯的PBPK模型得到各个物质在肝脏中的浓度,再将独立的模型在肝脏中进行耦合,模拟预测同时存在不同物质情况下肝脏中苯的浓度。但现有的复合污染的PBPK模型都是描述已知相互作用机制的有机物或者重金属和有机物的相互作用,还没有完全由重金属构成的复合PBPK模型。由于各个重金属在体内的代谢过程各不相同,半衰期相差很大,时间范围从天(如砷)、月(如甲基汞)到数十年(如铅、镉),很难将其综合到一个模型中考虑[
本文标题:药代动力学论文
链接地址:https://www.777doc.com/doc-372182 .html