您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 其它行业文档 > [第6章]_原核生物的基因表达调控
第六章原核生物的基因表达调控•6.1原核生物基因表达调控概•6.2操纵子学说•6.3色氨酸操纵子的表达调控•6.4其他操纵子•6.5转录后水平上的调控•6.6细菌的应急反应6.1原核生物基因表达调控概述•基因表达(geneexpression)是指储存遗传信息的基因经过一系列步骤表现出其生物功能的整个过程。典型的基因表达是基因经过转录、翻译,产生有生物活性的蛋白质的过程。•既然从DNA到蛋白质的过程称为基因表达,对这个过程的调节就称为基因表达调控(generegulation或genecontrol)。基因表达调控是现阶段分子生物学研究的中心课题。6.1.1基因表达调控的意义•基因组(genome)是指含有一个生物体生存、发育、活动和繁殖所需要的全部遗传信息的整套核酸。•但生物基因组的遗传信息并不是同时全部都表达出来的,大肠杆菌基因组含有约4000个基因,一般情况下只有5-10%在高水平转录状态,其它基因有的处于较低水平的表达,有的就暂时不表达。••改变基因表达的情况以适应环境,在原核生物、单细胞生物中尤其显得突出和重要,因为细胞的生存环境经常会有剧烈的变化。•原核生物中,营养状况(nutritionalstatus)和环境因素(environmentalfactor)对基因表达起着举足轻重的影响。调控是为了适应环境获取营养达到生存即分裂繁殖的最优化(原核既无充足的能源贮备,又无高等植物制造有机物的本领)。所以调控体现1个“快”字,快速适应环境,获取营养,合成必需蛋白质、降解不必要成分。这是长期进化,获得的适应应变能力。•例如:周围有充足的葡萄糖,细菌就可以利用葡萄糖作能源和碳源,不必更多去合成利用其它糖类的酶类,当外界没有葡萄糖时,细菌就要适应环境中存在的其它糖类(如乳糖、半乳糖、阿拉伯糖等),开放能利用这些糖的酶类基因,以满足生长的需要。•即使是内环境保持稳定的高等哺乳类,也经常要变动基因的表达来适应环境,例如与适宜温度下生活相比较,在冷或热环境下适应生活的动物,其肝脏合成的蛋白质图谱就有明显的不同。•所以,基因表达调控是生物适应环境生存的必需。•不同组织细胞中不仅表达的基因数量不相同,而且基因表达的强度和种类也各不相同,这就是基因表达的组织特异性(tissuespecificity)。•例如肝细胞中涉及编码鸟氨酸循环酶类的基因表达水平高于其它组织细胞,合成的某些酶(如精氨酸酶)为肝脏所特有;胰岛β细胞合成胰岛素;甲状腺滤泡旁细胞(C细胞)专一分泌降血钙素等。•细胞分化发育的不同时期,基因表达的情况是不相同的,这就是基因表达的阶段特异性(stagespecificity)。•真核生物尤其是高等真核生物中,激素水平(hormonelevel)和发育阶段(developmentalstage)是基因表达调控的最主要手段,营养和环境因素的影响力大为下降。••一个受精卵含有发育成一个成熟个体的全部遗传信息,在个体发育分化的各个阶段,各种基因极为有序地表达,一般在胚胎时期基因开放的数量最多,随着分化发展,细胞中某些基因关闭(turnoff)、某些基因转向开放(turnon),胚胎发育不同阶段、不同部位的细胞中开放的基因及其开放的程度不一样,合成蛋白质的种类和数量都不相同,显示出基因表达调控在空间和时间上极高的有序性,从而逐步生成形态与功能各不相同、极为协调、巧妙有序的组织脏器。•遗传程序调控,该遗传程序是构成胚胎发育和组织分化的基础。仅极少基因间接或直接受环境因素的影响。这一特点使真核在千变万化的环境下,主要组织或器官仍能维持正常功能(“处世不惊”)。•从上所述,不难看出:生物的基因表达不是杂乱无章的,而是受着严密、精确调控的,不仅生命的遗传信息是生物生存所必需的,而且遗传信息的表达调控也是生命本质所在。基因表达的模式•生物体内的基因调控各不相同,基因表达随环境变化的情况,可以大致把基因表达分成两类:•①组成性表达(constitutiveexpression)指不大受环境变动而变化的一类基因表达。•其中某些基因表达产物是细胞或生物体整个生命过程中都持续需要而必不可少的,这类基因可称为看家基因(housekeepinggene),这些基因中不少是在生物个体其它组织细胞、甚至在同一物种的细胞中都是持续表达的,可以看成是细胞基本的基因表达。•组成性基因表达也不是一成不变的,其表达强弱也是受一定机制调控的。•②适应性表达(adaptiveexpression)指环境的变化容易使其表达水平变动的一类基因表达。•应环境条件变化基因表达水平增高的现象称为诱导(induction),这类基因被称为可诱导的基因(induciblegene);•相反,随环境条件变化而基因表达水平降低的现象称为阻遏(repression),相应的基因被称为可阻遏的基因(repressiblegene)。6.1.2原核基因表达调控的特点与方式基因表达调控主要表现在以下两方面:•1.转录水平上的调控(transcriptionalregulation);•2.转录后水平上的调控(post-transcriptionalregulation),包括•①mRNA加工成熟水平上的调控•(differentialprocessingofRNAtranscript);•②翻译水平上的调控•(differentialtranslationofmRNA)。真原核调控的主要水平(主调)都在转录水平。因为:1.任何连锁反应控制第一步是最经济和最有效的(既不需要,何必转录)。2.RNApol没有纠错功能(DNApol有)微调DNA水平转录后水平原核调控余步不大,因其转录翻译同一个compt进行。翻译水平是原核次要调控水平。翻译后水平•调控的基本方式•真原核调控的基本方式都是通过调控因子:1.蛋白质(主)2.核酸和3.小分子化合物之间的识别和相互作用对基因表达实现正控制或负控制(也称正调控和负调控)•调控物质的化学本质蛋白质、核酸、小分子化合物。•在转录水平上对基因表达的调控决定于DNA的结构、RNA聚合酶的功能、蛋白因子及其他小分子配基的相互作用。•因为细菌mRNA在形成过程中与核糖体混合在一起,所以,细菌的转录与翻译过程几乎发生在同一时间间隔内,转录与翻译相耦联(coupledtranscriptionandtranslation)。•真核生物中,转录产物(primarytranscript)只有从核内运转到核外,才能被核糖体翻译成蛋白质。6.1.3原核基因表达调控的几个重要概念•1.细菌细胞对营养的适应•2.顺式作用元件和反式作用因子•3.结构基因和调节基因•4.操纵基因和阻遏蛋白•5.组成蛋白和调节蛋白6.2操纵子学说•法国巴斯德研究院的FrancoisJacob与JacquesMonod于1960年在法国科学院院报(ProceedingoftheFrenchAcademyofSciences)上发表了一篇论文,提出乳糖代谢中的两个基因被一靠近它们的遗传因子所调节。这二个基因为β-半乳糖苷酶(β-galactosidase)和半乳糖苷透过酶(galactosidepermease)。•在此文中他们首先提出了操纵子(operon)和操纵基因(operator)的概念,他们的操纵子学说(theoryofoperon)使我们得以从分子水平认识基因表达的调控,是一个划时代的突破,因此他们二人于1965年荣获诺贝尔生理学奖。一、操纵子(operon)细菌能随环境的变化,迅速改变某些基因表达的状态,这就是很好的基因表达调控的实验模型。人们就是从研究这种现象开始,打开认识基因表达调控分子机理的窗口的。1.操纵子的提出大肠杆菌可以利用葡萄糖、乳糖、麦芽糖、阿拉伯糖等作为碳源而生长繁殖,当培养基中含有葡萄糖和乳糖时,细菌优先利用葡萄糖,当葡萄糖耗尽,细菌停止生长,经过短时间的适应,就能利用乳糖,细菌继续呈指数式繁殖增长。大肠杆菌利用乳糖至少需要两个酶:促使乳糖进入细菌的半乳糖透过酶(lactosepermease)和催化乳糖分解第一步的-半乳糖苷酶(-galactosidase)。在环境中没有乳糖或其他-半乳糖苷时,大肠杆菌合成-半乳糖苷酶量极少,加入乳糖2-3分钟后,细菌大量合成-半乳糖苷酶,其量可提高千倍以上,在以乳糖作为唯一碳源时,菌体内的-半乳糖苷酶量可占到细菌总蛋白量的3%。在上述二阶段生长细菌利用乳糖再次繁殖前,也能测出细菌中-半乳糖苷酶活性显著增高的过程。这种典型的诱导现象,是研究基因表达调控极好的模型。针对大肠杆菌利用乳糖的适应现象,法国的Jocob和Monod等人做了一系列遗传学和生化学研究实验,于1961年提出乳糖操纵子(lacoperon)学说。2.操纵子的基本组成乳糖操纵子模型已被许多研究实验所证实,对其有了更深入的认识,并且发现其他原核生物基因调控也有类似的操纵子组织,操纵子是原核基因表达调控的一种重要的组织形式,大肠杆菌的基因多数以操纵子的形式组成基因表达调控的单元。下面就以乳糖操纵子为例子说明操纵子的最基本的组成元件(elements)。(1)结构基因群操纵子中被调控的编码蛋白质的基因可称为结构基因(structuralgene,SG)。一个操纵子中含有2个以上的结构基因,多的可达十几个。每个结构基因是一个连续的开放阅读框(openreadingframe),5’端有起始密码ATG,3’端有终止密码TAA、TGA或TAG。各结构基因头尾衔接、串连排列,组成结构基因群。至少在第一个结构基因5’侧具有核糖体结合位点(ribosomebindingsite,RBS),因而当这段含多个结构基因的DNA被转录成多顺反子mRNA,就能被核糖体所识别结合、并起始翻译。核糖体沿mRNA移动,在合成完第一个编码的多肽后,核糖体可以不脱离mRNA而继续翻译合成下一个基因编码的多肽,直至合成完这条多顺反子mRNA所编码的全部多肽。乳糖操纵子含有z、y和a3个结构基因。z基因长3510bp,编码含1170个氨基酸、分子量为135,000的多肽,以四聚体形式组成有活性的β-半乳糖苷酶,催化乳糖转变为半乳糖(allolactose),再分解为半乳糖和葡萄糖;y基因长780bp,编码有260个氨基酸、分子量为30,000的半乳糖透过酶,促使环境中的乳糖进入细菌;a基因长825bp,编码275氨基酸、分子量为32,000的转乙酰基酶,以二聚体活性形式催化半乳糖的乙酰化。z基因5’侧具有大肠杆菌核糖体识别结合位点(RBS)特征的Shine-Dalgarno(SD)序列,因而当乳糖操纵子开放时,核糖体能结合在转录产生的mRNA上。由于z、y、a三个基因头尾相接,上一个基因的翻译终止密码靠近下一个基因的翻译起始密码,因而同一个核糖体能沿此转录生成的多顺反子(polycistron)mRNA移动,在翻译合成了上一个基因编码的蛋白质后,不从mRNA上掉下来而继续沿mRNA移动合成下一个基因编码的蛋白质,一气依次合成这基因群所编码所有的蛋白质。(2)启动子启动子是指能被RNA聚合酶识别、结合并启动基因转录的一段DNA序列。操纵子至少有一个启动子,一般在第一个结构基因5'侧上游,控制整个结构基因群的转录。用RNA聚合酶与分离的一段DNA双链混合,再加入外切核酸酶去水解DNA,结果只有被RNA聚合酶识别结合而被保护的那段DNA不被水解,由此可以测出启动子的范围及其序列。虽然不同的启动子序列有所不同,但比较已经研究过的上百种原核生物的启动子的序列,发现有一些共同的规律,它们一般长40-60bp,含A-Tbp较多,某些段落很相似的,有保守性,称为共有性序列(consensussequences)。启动子一般可分为识别(R,recognition)、结合(B,binding)和起始(I,initiation)三个区段。转录起始第一个碱基(通常标记位置为+1)最常见的是A;在-10bp附近有TATAAT一组共有序列,因为这段共有序列是Pribnow首先发现的,称为Pribnow盒(Pribnowb
本文标题:[第6章]_原核生物的基因表达调控
链接地址:https://www.777doc.com/doc-3733127 .html