您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 质量控制/管理 > 金属工艺学方面的知识知识
金属工艺学金属工艺学是一门研究有关制造金属机件的工艺方法的综合性技术学科.主要内容:1常用金属材料性能2各种工艺方法本身的规律性及应用.3金属机件的加工工艺过程、结构工艺性。热加工:金属材料、铸造、压力加工、焊接目的、任务:使学生了解常用金属材料的性质及其加工工艺的基础知识,为学习其它相关课程及以后从事机械设计和制造方面的工作奠定必要的金属工艺学的基础。[以综合为基础,通过综合形成能力]第一篇金属材料第一章金属材料的主要性能两大类:1使用性能:机械零件在正常工作情况下应具备的性能。包括:机械性能、物理、化学性能2工艺性能:铸造性能、锻造性能、焊接性能、热处理性能、切削性能等。第一节金属材料的机械性能指力学性能---受外力作用反映出来的性能。一弹性和塑性:1弹性:金属材料受外力作用时产生变形,当外力去掉后能恢复其原来形状的性能。力和变形同时存在、同时消失。如弹簧:弹簧靠弹性工作。2塑性:金属材料受外力作用时产生永久变形而不至于引起破坏的性能。(金属之间的连续性没破坏)塑性大小以断裂后的塑性变形大小来表示。塑性变形:在外力消失后留下的这部分不可恢复的变形。3拉伸图金属材料在拉伸过程中弹性变形、塑性变形直到断裂的全部力学性能可用拉伸图形象地表示出来。以低碳钢为例σbσkσsσeε(Δl)将金属材料制成标准式样。在材料试验机上对试件轴向施加静压力P,为消除试件尺寸对材料性能的影响,分别以应力σ(即单位面积上的拉力4P/πd2)和应变(单位长度上的伸长量Δl/l0)来代替P和Δl,得到应力——应变图1)弹性阶段oeσe——弹性极限2)屈服阶段:过e点至水平段右端σs——塑性极限,s——屈服点过s点水平段——说明载荷不增加,式样仍继续伸长。(P一定,σ=P/F一定,但真实应力P/F1↑因为变形,F1↓)发生永久变形3)强化阶段:水平线右断至b点P↑变形↑σb——强度极限,材料能承受的最大载荷时的应力。4)局部变形阶段bk过b点,试样某一局部范围内横向尺寸突然急剧缩小。“缩颈”(试样横截面变小,拉力↓)4延伸率和断面收缩率:——表示塑性大小的指针1)延伸率:δ=l0——式样原长,l1——拉深后长2)断面收缩率:F0——原截面,F1—拉断后截面*1)δ、ψ越大,材料塑性越好2)ε与δ区别:拉伸图中ε=ε弹+ε塑,δ=εmas塑3)一般δ〉5%为塑性材料,δ〈5%为脆性材料。5条件屈服极限σ0。2有些材料在拉伸图中没有明显的水平阶段。通常规定产生0.2塑性变形的应力作为屈服极限,称为条件屈服极限.二刚度金属材料在受力时抵抗弹性变形的能力—1材料本质弹性模量—在弹性范围内,应力与应变的比值.其大小主要决定材料本身.相当于单位元元变形所需要的应力.σ=Εε,Ε=σ/ε=tgα2几何尺寸\形状\受力相同材料的E相同,但尺寸不同,则其刚度也不同.所以考虑材料刚度时要把E\形状\尺寸同时考虑.还要考虑受力情况.三强度强度指金属材料在外力作用下抵抗塑性变形和断裂的能力.按作用力性质的不同,可分为:抗拉强度σ+抗压强度σ-抗弯强度σw抗剪强度τb抗扭强度σn常用来表示金属材料强度的指标:屈服强度:(PaN/m2)Ps-产生屈服时最大外力,F0-原截面抗拉强度(PaN/m2)Pb-断裂前最大应力.σs\σb在设计机械和选择评定材料时有重要意义.因金属材料不能在超过σs的条件下工作,否则会塑变.超过σb工作,机件会断裂.σs--σb之间塑性变形,压力加工四硬度金属抵抗更硬的物体压入其内的能力—是材料性能的综合物理量,表示金属材料在一个小的体积范围内的抵抗弹性变形\塑性变形或断裂的能力.1布式硬度HB用直径D的淬火钢球或硬质合金球,在一定压力P下,将钢球垂直地压入金属表面,并保持压力到规定的时间后卸荷,测压痕直径d(用刻度放大镜测)则HB=P/F(N/mm2)单位一般不写.F-压痕面积.HBS—压头用淬火钢球,HBW—压头用硬质合金球l因钢球存在变形问题,不能测太硬的材料,适于HBS450,如铸铁,有色金属,软钢等.而HBW<650.l特点:压痕大,代表性全面l应用:不适宜薄件和成品件2洛式硬度HR用金刚石圆锥在压头或钢球,在规定的预载荷和总载荷下,压入材料,卸载后,测其深度h,由公式求出,可在硬度计上直接读出,无单位.不同压头应用范围不同如下表:HRBd=1.588淬火钢球980.7退火钢灰铁有色金属HRC1200金刚石圆锥1471淬火回火件HRA588.4硬质合金碳化物优点:易操作,压痕小,适于薄件,成品件缺点:压痕小,代表性不全面需多测几点.*硬度与强度有一定换算关系,故应用广泛.根据硬度可近似确定强度,如灰铁:σb=1HBS3显微硬度(Hm)用于测定金属组织中个别组成体,夹杂物等硬度.显微放大测量显微硬度(查表)与HR有对应关系.如:磨削烧伤表面,看烧伤层硬度变化.五冲击韧性ak材料抵抗冲击载荷的能力常用一次摆锤冲击试验来测定金属材料的冲击韧性,标准试样一次击断,用试样缺口处单位截面积上的冲击功来表示akak=Ak/F(J/m2)Ak=G(H-h)G-重量F-缺口截面脆性材料一般不开口,因其冲击值低,难以比较差别.1ak↑,冲击韧性愈好.2Ak不直接用于设计计算:在生产中,工件很少因受一次大能量冲击载荷而破坏,多是小冲击载荷,多次冲击引起破坏,而此时,主要取决于强度,故设计时,ak只做校核.3ak对组织缺陷很敏感,能够灵敏地反映出材料品质,宏观缺陷,纤维组织方面变化.所以,冲击试验是生产上用来检验冶炼、热加工、热处理工艺质量的有效方法。(微裂纹——应力集中——冲击——裂纹扩展)六疲劳强度:问题提出:许多零件如曲轴、齿轮、连杆、弹簧等在交变载荷作用下,发生断裂时的应力远低于该材料的屈服强度,这种现象——疲劳破坏。据统计,80%机件失效是由于疲劳破坏。疲劳强度——当金属材料在无数次交变载荷作用下而不致于引起断裂的最大应力。1疲劳曲线——交变应力与断裂前的循环次数N之间的关系。例如:纯弯曲,有色金属N》108钢材N107不疲劳破坏2疲劳破坏原因材料有杂质,表面划痕,能引起应力集中,导致微裂纹,裂纹扩展致使零件不能承受所加载荷突然破坏.3预防措施改善结构形状,避免应力集中,表面强化-喷丸处理,表面淬火等.第二节金属材料的物理,化学及工艺性能一物理性能比重:计算毛坯重量,选材,如航天件:轻熔点:铸造锻造温度(再结晶温度)热膨胀性:铁轨模锻的模具量具导热性:铸造:金属型锻造:加热速度导电性:电器元件铜铝磁性:变压器和电机中的硅钢片磨床:工作台二化学性能金属的化学性能,决定了不同金属与金属,金属与非金属之间形成化合物的性能,使有些合金机械性能高,有些合金抗腐蚀性好,有的金属在高温下组织性能稳定.如耐酸,耐碱等如化工机械,高温工作零件等三工艺性能金属材料能适应加工工艺要求的能力.铸造性,可锻性,可焊性,切削加工形等思考题;1什么是应力,应变(线应变)?2颈缩现象发生在拉伸图上哪一点?如果没发生颈缩,是否表明该试样没有塑性变形?3σ0.2的意义?能在拉伸图上画出吗?4将钟表发条拉成一直线,这是弹性变形还是塑性变形?如何判定变形性质?5为什么冲击值不直接用于设计计算?第二章金属和合金的晶体结构与结晶第一节金属的晶体结构一基本概念:固体物质按原子排列的特征分为:晶体:原子排列有序,规则,固定熔点,各项异性.非晶体:原子排列无序,不规则,无固定熔点,各项同性如:金属,合金,金刚石—晶体玻璃,松香沥青—非晶体晶格:原子看成一个点,把这些点用线连成空间格子.结点:晶格中每个点.晶胞:晶格中最小单元,能代表整个晶格特征.晶面:各个方位的原子平面晶格常数:晶胞中各棱边的长度(及夹角),以A(1A=10-8cm)度量金属晶体结构的主要区别在于晶格类型,晶格常数.二常见晶格类型1体心立方晶格:Cr,W,α-Fe,Mo,V等,特点:强度大,塑性较好,原子数:1/8X8+1=220多种2面心立方晶格:CuAgAuNiAlPbγ-Fe塑性好原子数:420多种4密排六方晶格:MgZnBeβ-Crα-TiCd(镉)纯铁在室温高压(130x108N/M2)成ε-Fe原子数=1/6x12+1/2x2+3=6,30多种三多晶结构单晶体-晶体内部的晶格方位完全一致.多晶体—许多晶粒组成的晶体结构.各项同性.晶粒—外形不规则而内部晶各方位一致的小晶体.晶界—晶粒之间的界面.第二节金属的结晶一金属的结晶过程(初次结晶)1结晶:金属从液体转变成晶体状态的过程.晶核形成:自发晶核:液体金属中一些原子自发聚集,规则排列.外来晶核:液态金属中一些外来高熔点固态微质点.晶核长大:已晶核为中心,按一定几何形状不断排列.*晶粒大小控制:晶核数目:多—细(晶核长得慢也细)冷却速度:快—细(因冷却速度受限,故多加外来质点)晶粒粗细对机械性能有很大影响,若晶粒需细化,则从上述两方面入手.结晶过程用冷却曲线描述!2冷却曲线温度随时间变化的曲线—热分析法得到1)理论结晶温度实际结晶温度时间(s)T(℃)过冷:液态金属冷却到理论结晶温度以下才开始结晶的现象.2)过冷度:理论结晶温度与实际结晶温度之差.(实际冷却快,结晶在理论温度下)二金属的同素异购转变(二次结晶\重结晶)同素异构性—一种金属能以几种晶格类型存在的性质.同素异购转变—金属在固体时改变其晶格类型的过程.如:铁锡锰钛钴以铁为例:δ-Fe(1394℃)γ-Fe(912℃)α-Fe体心面心体心因为铁能同素异构转变,才有对钢铁的各种热处理.(晶格转变时,体积会变化,以原子排列不同)第三节合金的晶体结构一合金概念合金:由两种或两种以上的金属元素或金属与非金属组成的具有金属特性的物质.组元:组成合金的基本物质.如化学元素(黄铜:二元)金属化合物相:在金属或合金中,具有相同成分且结构相同的均匀组成部分.相与相之间有明显的界面.如:纯金属—一个相,温度升高到熔点,液固两相.合金液态组元互不溶,几个组元,几个相.固体合金中的基本相结构为固溶体和金属化合物,还可能出现由固溶体和金属化合物组成的混合物。二合金结构1固溶体溶质原子溶入溶剂晶格而仍保持溶剂晶格类型的金属晶体。根据溶质在溶剂晶格中所占的位置不同,分为:1)置换固溶体溶质原子替代溶剂原子而占据溶剂晶格中的某些结点位置,所形成的固溶体。*溶质原子,溶剂原子直径相差不大时,才能置换如:Cu——ZnZn溶解度有限。Cu——Ni溶解度无限晶格畸变——固溶强化:畸变时塑性变形阻力增加,强,硬增加。这是提高合金机械性能的一个途径。2)间隙固溶体溶质原子嵌入各结点之间的空隙,形成固溶体。溶质原子小,与溶剂原子比为〈0.59。溶解度有限。也固溶强化。2金属化合物合金各组成元素之间相互作用而生成的一种新的具有金属性质,可用分子式表示的物质。如Fe3CWC特点:(1)较高熔点、较大脆性、较高硬度。(2)在合金中作强化相,提高强度、硬度、耐磨性,而塑性、韧性下降,如WC、TiC。可通过调整合金中的金属化合物的数量、形态、分布来改变合金的性能3机械混合物固溶体+金属化合物、固+固——综合性能§4二元合金状态图的构成合金系:由给定的组元可以配制成一系列成分含量不同的合金,这些合金组成一个合金系统——为研究合金系的合金成分、温度、结晶组织之间的变化规律、建立合金状态图来描述。合金状态图——合金系结晶过程的简明图解。实质:温度——成分作标图,是在平衡状态下(加热冷却都极慢的条件下)得到的。二、二元合金状态图的建立以Pb(铅)-Sb(锑)合金为例:1配置几种Pb-Sb成分不同的合金。2做出每个合金的冷却曲线3将每个合金的临界点标在温度—成分坐标上,并将相通意义的点连接起来,即得到Pb-Sb合金的状态图。ABDCE液相线:ACB固相线:DCE单相区:只有一个相。两相区:两个相。ACD、BCE。c—共晶点*作业:第三章铁碳合金§1铁碳合金的基本组织液态:Fe、C无限互溶。固态:固溶体金属化合物t℃1538δ-Fe+C——铁素体F1394γ-Fe+C——奥氏体A912α-Fe+C——铁素体Fs一铁素体碳溶于α-Fe形成的固溶体——铁素体F体心立方,显微镜
本文标题:金属工艺学方面的知识知识
链接地址:https://www.777doc.com/doc-3735425 .html