您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 2019-2020学年九年级上数学试卷
2019-2020学年九年级上数学试卷一、你一定能选对!(本大题共有10小题,每小题3分,共30分)下列各题均有四个备选答案,其中有且只有一个是正确的,请将正确答案的代号在答题卡上将对应的答案标号涂黑.1.一元二次方程3x2+1=6x的一次项系数为()A.﹣6B.3C.1D.62.近几年我国国产汽车行业蓬勃发展,下列汽车标识中,是中心对称图形的是()A.B.C.D.3.已知点A(﹣1,y1),点B(2,y2)在抛物线y=﹣3x2+2上,则y1,y2的大小关系是()A.y1>y2B.y1<y2C.y1=y2D.无法判断4.用配方法解一元二次方程x2﹣4x+1=0时,下列变形正确的是()A.(x﹣2)2=1B.(x﹣2)2=5C.(x+2)2=3D.(x﹣2)2=35.抛物线y=2x2向上平移3个单位,再向右平移2个单位,得到的抛物线是()A.y=2(x+2)2﹣3B.y=2(x+2)2+3C.y=2(x﹣2)2﹣3D.y=2(x﹣2)2+36.如图,若AB是⊙O的直径,CD是⊙O的弦,∠ABD=50°,则∠C的度数为()A.60°B.50°C.40°D.30°7.如图,在方格纸上△DEF是由△ABC绕定点P顺时针旋转得到的.如果用(2,1)表示方格纸上A点的位置,(1,2)表示B点的位置,那么点P的位置为()A.(5,2)B.(2,5)C.(2,1)D.(1,2)8.某超市一月份的营业额为200万元,一月、二月、三月的营业额共1000万元,如果平均每月增长率为x,则根据题意列方程为()A.200(1+x)2=1000B.200+200(1+x)2=1000C.200(1+x)3=1000D.200+200(1+x)+200(1+x)2=10009.如图,四边形ABCD内接于半径为5的⊙O,且AB=6,BC=7,CD=8,则AD的长度是()A.B.C.D.10.如图,二次函数y=ax2+bx+c(a≠0)的图象过点(﹣2,0),对称轴为直线x=1.有以下结论:①abc>0;②7a+c<0;③a+b≤m(am+b)(m为任意实数)④若A(x1,m),B(x2,m)是抛物线上的两点,当x=x1+x2时,y=c;⑤若方程a(x+2)(4﹣x)=﹣1的两根为x1,x2,且x1<x2,则﹣2≤x1<x2<4.其中正确结论的个数有()A.2个B.3个C.4个D.5个二、填空题(本大题共有6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结论直接填写在答题卷的指定位置11.已知一元二次方程x2﹣4x+3=0的两根为x1、x2,则x1•x2=.12.若点A(a,4)与点B(﹣3,b)关于原点成中心对称,则a+b=.13.如图,四边形ABCD内接于⊙O,E为CD延长线上一点,若∠B=100°,则∠ADE=.14.如图,一名男生推铅球,铅球行进高度y(单位:m)与水平距离x(单位:m)之间的关系是y=﹣x2+x+.则他将铅球推出的距离是m.15.如图,在四边形ABCD中,∠ABC=∠ADC=45°,AB=AC,BD=,CD=3,则AD=.16.如图,在△ABC中,∠BAC=120°,AB=AC=6,D为边AB上一动点(不与B点重合),连接CD,将线段CD绕着点D逆时针旋转90°得到DE,连接BE,则S△BDE的最大值为.三、解下列各题(本大题共8小题,共72分)下列各题需要在答题卷的指定位置写出文字说明、证明过程、演算步骤或画出图形.17.解方程:(1)x2+2x=0.(2)x2﹣4x﹣7=0.18.已知抛物线的顶点为(﹣1,﹣4),且过点(0,﹣3)(1)求抛物线的解析式;(2)求抛物线与x轴交点的坐标.19.改善小区环境,争创文明家园.如图所示,某社区决定在一块长(AD)16m,宽(AB)9m的矩形场地ABCD上修建三条同样宽的小路,其中两条与AB平行,另一条与AD平行,其余部分种草.要使草坪部分的总面积为112m2,则小路的宽应为多少?20.如图,在△ABC中,∠B=90°,点D为边AC的中点,请按下列要求作图,并解决问题:(1)作点D关于BC的对称点O;(2)在(1)的条件下,将△ABC绕点O顺时针旋转90°,①画出旋转后的△EFG(其中A、B、C三点旋转后的对应点分别是点E、F、G);②若∠C=a,则∠BGC=.(用含a的式子表示)21.已知,△ABC内接于⊙O,AC为⊙O的直径,点D为优弧BC的中点(1)如图1,连接OD,求证:AB∥OD;(2)如图2,过点D作DE⊥AC,垂足为E.若AE=3,BC=8,求⊙O的半径.22.某网店销售一种儿童玩具,每件进价20元,规定单件销售利润不低于10元,且不高于18元.试销售期间发现,当销售单价定为35元时,每天可售出250件,销售单价每上涨1元,每天销售量减少10件,该网店决定提价销售.设每天销售量为y件,销售单价为x元.(1)请直接写出y与x之间的函数关系式和自变量x的取值范围;(2)当销售单价是多少元时,网店每天获利3840元?(3)网店决定每销售1件玩具,就捐赠a元(0<a≤6)给希望工程,每天扣除捐赠后可获得最大利润为3300元,求a的值.23.已知,在△ABC中,∠ABC=90°,AB=BC=4,点O是边AC的中点,连接OB,将△AOB绕点A顺时针旋转α°至△ANM,连接CM,点P是线段CM的中点,连接PB,PN.(1)如图1,当α=180时,请直接写出线段PN和PB之间满足的位置和数量关系;(2)如图2,当0<α<180时,请探索线段PN和PB之间满足何位置和数量关系?证明你的结论(3)当△AOB旋转至C,M,N三点共线时,线段BP的长为.24.如图,直线l:y=3x﹣3分别与x轴,y轴交于点A,点B,抛物线y=ax2﹣2ax+a﹣4过点B.(1)求抛物线的解析式;(2)点C是第四象限抛物线上一动点,连接AC,BC.①当△ABC的面积最大时,求点C的坐标及△ABC面积的最大值;②在①的条件下,将直线l绕着点A逆时针方向旋转到直线l',l'与线段BC交于点D,设点B,点C到l'的距离分别为d1和d2,当d1+d2最大时,求直线l旋转的角度.参考答案与试题解析一.选择题(共10小题)1.一元二次方程3x2+1=6x的一次项系数为()A.﹣6B.3C.1D.6【分析】将所给方程化为3x2﹣6x+1=0的形式即可求解.【解答】解:3x2+1=6x化为3x2﹣6x+1=0,∴一次项系数为﹣6,故选:A.2.近几年我国国产汽车行业蓬勃发展,下列汽车标识中,是中心对称图形的是()A.B.C.D.【分析】把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.根据中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、不是轴对称图形,不是中心对称图形,故此选项错误;D、不是轴对称图形,是中心对称图形,故此选项符合题意.故选:D.3.已知点A(﹣1,y1),点B(2,y2)在抛物线y=﹣3x2+2上,则y1,y2的大小关系是()A.y1>y2B.y1<y2C.y1=y2D.无法判断【分析】将点A(﹣1,y1),点B(2,y2)分别代入y=﹣3x2+2,求出相应的y1、y2,即可比较大小.【解答】解:∵点A(﹣1,y1),点B(2,y2)在抛物线y=﹣3x2+2上,∴当x=﹣1时,y1=﹣1,当x=2时,y2=﹣10,∴y1>y2,故选:A.4.用配方法解一元二次方程x2﹣4x+1=0时,下列变形正确的是()A.(x﹣2)2=1B.(x﹣2)2=5C.(x+2)2=3D.(x﹣2)2=3【分析】移项,配方,即可得出选项.【解答】解:x2﹣4x+1=0,x2﹣4x=﹣1,x2﹣4x+4=﹣1+4,(x﹣2)2=3,故选:D.5.抛物线y=2x2向上平移3个单位,再向右平移2个单位,得到的抛物线是()A.y=2(x+2)2﹣3B.y=2(x+2)2+3C.y=2(x﹣2)2﹣3D.y=2(x﹣2)2+3【分析】根据“左加右减、上加下减”的原则进行解答即可.【解答】解:抛物线y=2x2向上平移3个单位,再向右平移2个单位,得到的抛物线是y=2(x﹣2)2+3,故选:D.6.如图,若AB是⊙O的直径,CD是⊙O的弦,∠ABD=50°,则∠C的度数为()A.60°B.50°C.40°D.30°【分析】由AB是⊙O的直径,推出∠ADB=90°,再由∠ABD=50°,求出∠A=40°,根据圆周角定理推出∠C=40°.【解答】解:∵AB是⊙O的直径,∴∠ADB=90°,∵∠ABD=50°,∴∠A=40°,∴∠C=40°.故选:C.7.如图,在方格纸上△DEF是由△ABC绕定点P顺时针旋转得到的.如果用(2,1)表示方格纸上A点的位置,(1,2)表示B点的位置,那么点P的位置为()A.(5,2)B.(2,5)C.(2,1)D.(1,2)【分析】如图,分别连接AD、CF,然后作它们的垂直平分线即可得到它们的旋转中心P,然后利用已知坐标即可求出P的坐标.【解答】解:如图,分别连接AD、CF,然后作它们的垂直平分线,它们交于P点,则它们旋转中心为P,根据图形知道△ABC绕P点顺时针旋转90°得到△DEF,∴P的坐标为(5,2).故选:A.8.某超市一月份的营业额为200万元,一月、二月、三月的营业额共1000万元,如果平均每月增长率为x,则根据题意列方程为()A.200(1+x)2=1000B.200+200(1+x)2=1000C.200(1+x)3=1000D.200+200(1+x)+200(1+x)2=1000【分析】可先表示出二月份的营业额,那么二月份的营业额×(1+增长率)=三月份的营业额,等量关系为:一月份的营业额+二月份的营业额+三月份的营业额=1000,把相应数值代入即可求解.【解答】解:二月份的营业额为200×(1+x),三月份的营业额在二月份营业额的基础上增加x,为200×(1+x)×(1+x),则列出的方程是200+200(1+x)+200(1+x)2=1000.故选:D.9.如图,四边形ABCD内接于半径为5的⊙O,且AB=6,BC=7,CD=8,则AD的长度是()A.B.C.D.【分析】作直径AE,连接EB,DE.利用勾股定理求出BE,推出CD=BE,推出=,再利用勾股定理求出AD即可.【解答】解:作直径AE,连接EB,DE.∵AE是直径,∴∠ABE=∠ADE=90°,∴BE===8,∵CD=BE=8,∴=,∴=,∴DE=BC=7,∴AD===,故选:A.10.如图,二次函数y=ax2+bx+c(a≠0)的图象过点(﹣2,0),对称轴为直线x=1.有以下结论:①abc>0;②7a+c<0;③a+b≤m(am+b)(m为任意实数)④若A(x1,m),B(x2,m)是抛物线上的两点,当x=x1+x2时,y=c;⑤若方程a(x+2)(4﹣x)=﹣1的两根为x1,x2,且x1<x2,则﹣2≤x1<x2<4.其中正确结论的个数有()A.2个B.3个C.4个D.5个【分析】根据二次函数的图象与性质即可求出答案.【解答】解:①由图象可知:a>0,c<0,﹣>0,∴abc>0,故①正确;②∵抛物线的对称轴为直线x=1,抛物线的对称轴为直线x=1,∴﹣=1,∴b=﹣2a,当x=﹣2时,y=4a﹣2b+c=0,∴4a+4a+c=0,∴8a+c=0,∴7a+c=﹣a,∵a>0,∴﹣a<0,∴7a+c<0,故②正确;③由图象可知,当x=1时,函数有最小值,∴a+b+c≤am2+bm+c(m为任意实数),∴a+b≤m(am+b),故③正确;④∵A(x1,m),B(x2,m)是抛物线上的两点,由抛物线的对称性可知:x1+x2=1×2=2,∴当x=2时,y=4a+2b+c=4a﹣4a+c=c,故④正确;⑤∵图象过点(﹣2,0),对称轴为直线x=1.抛物线与x轴的另外一个交点坐标为(4,0),∴y=ax2+bx+c=a(x+2)(x﹣4)若方程a(x+2)
本文标题:2019-2020学年九年级上数学试卷
链接地址:https://www.777doc.com/doc-3749449 .html