您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 相交线和平行线提高题与常考题型和培优题(含解析)
第1页(共37页)相交线与平行线提高题与常考题和培优题(含解析)一.选择题(共12小题)1.如图,AB∥CD,CD⊥EF,若∠1=124°,则∠2=()A.56°B.66°C.24°D.34°2.如图是婴儿车的平面示意图,其中AB∥CD,∠1=120°,∠3=40°,那么∠2的度数为()A.80°B.90°C.100°D.102°3.如图,直线a∥b,若∠2=55°,∠3=100°,则∠1的度数为()A.35°B.45°C.50°D.55°4.如图,△ABC的面积为2,将△ABC沿AC方向平移至△DFE,且AC=CD,则四边形AEFB的面积为()A.6B.8C.10D.125.如图,点D、E、F分别在AB,BC,AC上,且EF∥AB,要使DF∥BC,只需再有条件()第2页(共37页)A.∠1=∠2B.∠1=∠DFEC.∠1=∠AFDD.∠2=∠AFD6.如图,与∠1是同旁内角的是()A.∠2B.∠3C.∠4D.∠57.如图,在下列条件中,不能判定直线a与b平行的是()A.∠1=∠2B.∠2=∠3C.∠3=∠5D.∠3+∠4=180°8.如图,直线a、b被直线c所截,下列条件能使a∥b的是()A.∠1=∠6B.∠2=∠6C.∠1=∠3D.∠5=∠79.如图,将一副三角板叠放在一起,使直角的顶点重合于点O,AB∥OC,DC与OB交于点E,则∠DEO的度数为()第3页(共37页)A.85°B.70°C.75°D.60°10.如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=50°,则∠AED=()A.65°B.115°C.125°D.130°11.如图,AB∥CD,DA⊥AC,垂足为A,若∠ADC=35°,则∠1的度数为()A.65°B.55°C.45°D.35°12.如图,直线a∥b,∠1=85°,∠2=35°,则∠3=()A.85°B.60°C.50°D.35°二.填空题(共12小题)13.如图,已知BD∥AC,∠1=65°,∠A=40°,则∠2的大小是.14.如图,将长方形ABCD沿AE折叠,使点D落在BC边上的点F,若∠BFA=34°,则∠DAE=度.15.如图,m∥n,直角三角板ABC的直角顶点C在两直线之间,两直角边与两直线相交所形成的锐角分别为α、β,则α+β=.第4页(共37页)16.如图,四边形ABCD中,∠BAD=∠ADC=90°,AB=AD=,CD=,点P是四边形ABCD四条边上的一个动点,若P到BD的距离为,则满足条件的点P有个.17.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是.18.如图,直线AB∥CD,BC平分∠ABD,若∠1=54°,则∠2=.19.如图,直线AB∥CD,CA平分∠BCD,若∠1=50°,则∠2=.20.如图,已知AB∥CD,BC∥DE.若∠A=20°,∠C=120°,则∠AED的度数是.第5页(共37页)21.如图,直线a∥b,直线c与直线a、b分别相交于A、B两点,若∠1=60°,则∠2=.22.如图,AB∥CD,直线EF分别交AB、CD于M,N两点,将一个含有45°角的直角三角尺按如图所示的方式摆放,若∠EMB=75°,则∠PNM等于度.23.如图,△ABC中,BC=5cm,将△ABC沿BC方向平移至△A′B′C′的对应位置时,A′B′恰好经过AC的中点O,则△ABC平移的距离为cm.24.如图,是赛车跑道的一段示意图,其中AB∥DE,测得∠B=140°,∠D=120°,则∠C的度数为度.三.解答题(共16小题)25.如图,一个由4条线段构成的“鱼”形图案,其中∠1=50°,∠2=50°,∠3=130°,找出图中的平行线,并说明理由.第6页(共37页)26.如图,已知AC∥ED,AB∥FD,∠A=65°,求:∠EDF的度数.27.如图,已知AB∥CD,若∠C=40°,∠E=20°,求∠A的度数.28.如图,在△ABC中,∠B+∠C=110°,AD平分∠BAC,交BC于点D,DE∥AB,交AC于点E,求∠ADE的度数.29.如图,直线a∥b,BC平分∠ABD,DE⊥BC,若∠1=70°,求∠2的度数.30.如图,E为AC上一点,EF∥AB交AF于点F,且AE=EF.求证:∠BAC=2∠1.第7页(共37页)31.如图,直线AB、CD相交于点O,OE平分∠BOD,∠AOC=76°,∠DOF=90°,求∠EOF的度数.32.如图,直线AB,CD相交于O点,OM⊥AB于O.(1)若∠1=∠2,求∠NOD;(2)若∠BOC=4∠1,求∠AOC与∠MOD.33.如图,两直线AB、CD相交于点O,OE平分∠BOD,∠AOC:∠AOD=7:11.(1)求∠COE的度数.(2)若射线OF⊥OE,请在图中画出OF,并求∠COF的度数.34.如图,四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,DF平分∠ADC,则BE与DF有何位置关系?试说明理由.第8页(共37页)35.将一副三角板中的两块直角三角尺的直角顶点C按如图方式叠放在一起(其中,∠A=60°,∠D=30°;∠E=∠B=45°):(1)①若∠DCE=45°,则∠ACB的度数为;②若∠ACB=140°,求∠DCE的度数;(2)由(1)猜想∠ACB与∠DCE的数量关系,并说明理由.(3)当∠ACE<180°且点E在直线AC的上方时,这两块三角尺是否存在一组边互相平行?若存在,请直接写出∠ACE角度所有可能的值(不必说明理由);若不存在,请说明理由.36.已知:如图,∠C=∠1,∠2和∠D互余,BE⊥FD于点G.求证:AB∥CD.37.已知:如图所示,∠ABD和∠BDC的平分线交于E,BE交CD于点F,∠1+∠2=90°.(1)求证:AB∥CD;(2)试探究∠2与∠3的数量关系.第9页(共37页)38.如图,∠1+∠2=180°,∠A=∠C,DA平分∠BDF.(1)AE与FC会平行吗?说明理由;(2)AD与BC的位置关系如何?为什么?(3)BC平分∠DBE吗?为什么.39.如图,一条直线分别与直线BE、直线CE、直线BF、直线CF相交于点A,G,H,D且∠1=∠2,∠B=∠C(1)找出图中相互平行的线,说说它们之间为什么是平行的;(2)证明:∠A=∠D.40.将△ABC纸片沿DE折叠,其中∠B=∠C.(1)如图1,点C落在BC边上的点F处,AB与DF是否平行?请说明理由;(2)如图2,点C落在四边形ABCD内部的点G处,探索∠B与∠1+∠2之间的数量关系,并说明理由.第10页(共37页)相交线与平行线提高题与常考题和培优题(含解析)参考答案与试题解析一.选择题(共12小题)1.(2017•新城区校级模拟)如图,AB∥CD,CD⊥EF,若∠1=124°,则∠2=()A.56°B.66°C.24°D.34°【分析】先根据平行线的性质,得出∠CEH=124°,再根据CD⊥EF,即可得出∠2的度数.【解答】解:∵AB∥CD,∠1=124°,∴∠CEH=124°,∴∠CEG=56°,又∵CD⊥EF,∴∠2=90°﹣∠CEG=34°.故选:D.【点评】本题主要考查了平行线的性质与垂线的定义,解题时注意:两直线平行,同位角相等.2.(2017•禹州市一模)如图是婴儿车的平面示意图,其中AB∥CD,∠1=120°,∠3=40°,那么∠2的度数为()第11页(共37页)A.80°B.90°C.100°D.102°【分析】根据平行线性质求出∠A,根据三角形外角性质得出∠2=∠1﹣∠A,代入求出即可.【解答】解:∵AB∥CD,∴∠A=∠3=40°,∵∠1=120°,∴∠2=∠1﹣∠A=80°,故选A.【点评】本题考查了平行线性质和三角形外角性质的应用,关键是求出∠A的度数和得出∠2=∠1﹣∠A.3.(2017•莒县模拟)如图,直线a∥b,若∠2=55°,∠3=100°,则∠1的度数为()A.35°B.45°C.50°D.55°【分析】根据两直线平行,同位角相等可得∠4=∠2,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:如图,∵直线a∥b,∴∠4=∠2=55°,∴∠1=∠3﹣∠4=100°﹣55°=45°.故选B.【点评】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记第12页(共37页)性质并准确识图是解题的关键.4.(2017•莒县模拟)如图,△ABC的面积为2,将△ABC沿AC方向平移至△DFE,且AC=CD,则四边形AEFB的面积为()A.6B.8C.10D.12【分析】直接利用平移的性质结合三角形面积求法得出答案.【解答】解:∵将△ABC沿AC方向平移至△DFE,且AC=CD,∴A点移动的距离是2AC,则BF=AD,连接FC,则S△BFC=2S△ABC,S△ABC=S△FDC=S△FDE=2,∴四边形AEFB的面积为:10.故选:C.【点评】此题主要考查了平移的性质以及三角形面积求法,正确得出三角形之间面积关系是解题关键.5.(2017春•杭州月考)如图,点D、E、F分别在AB,BC,AC上,且EF∥AB,要使DF∥BC,只需再有条件()A.∠1=∠2B.∠1=∠DFEC.∠1=∠AFDD.∠2=∠AFD【分析】由平行线的性质得出∠1=∠2,再由∠1=∠DFE,得出∠2=∠DFE,由内错角相等,两直线平行即可得出DF∥BC.【解答】解:要使DF∥BC,只需再有条件∠1=∠DFE;理由如下:第13页(共37页)∵EF∥AB,∴∠1=∠2,∵∠1=∠DFE,∴∠2=∠DFE,∴DF∥BC;故选:B.【点评】本题考查了平行线的判定与性质;熟练掌握平行线的判定与性质,并能进行推理论证是解决问题的关键.6.(2016•柳州)如图,与∠1是同旁内角的是()A.∠2B.∠3C.∠4D.∠5【分析】根据同位角、内错角、同旁内角、对顶角的定义逐个判断即可.【解答】解:A、∠1和∠2是对顶角,不是同旁内角,故本选项错误;B、∠1和∠3是同位角,不是同旁内角,故本选项错误;C、∠1和∠4是内错角,不是同旁内角,故本选项错误;D、∠1和∠5是同旁内角,故本选项正确;故选D.【点评】本题考查了同位角、内错角、同旁内角、对顶角的定义的应用,能熟记同位角、内错角、同旁内角、对顶角的定义是解此题的关键,注意:数形结合思想的应用.7.(2016•来宾)如图,在下列条件中,不能判定直线a与b平行的是()A.∠1=∠2B.∠2=∠3C.∠3=∠5D.∠3+∠4=180°第14页(共37页)【分析】直接用平行线的判定直接判断.【解答】解:A、∵∠1与∠2是直线a,b被c所截的一组同位角,∴∠1=∠2,可以得到a∥b,∴不符合题意,B、∵∠2与∠3是直线a,b被c所截的一组内错角,∴∠2=∠3,可以得到a∥b,∴不符合题意,C、∵∠3与∠5既不是直线a,b被任何一条直线所截的一组同位角,内错角,∴∠3=∠5,不能得到a∥b,∴符合题意,D、∵∠3与∠4是直线a,b被c所截的一组同旁内角,∴∠3+∠4=180°,可以得到a∥b,∴不符合题意,故选C【点评】此题是平行线的判定,解本题的关键是熟练掌握平行线的判定定理.8.(2016•百色)如图,直线a、b被直线c所截,下列条件能使a∥b的是()A.∠1=∠6B.∠2=∠6C.∠1=∠3D.∠5=∠7【分析】利用平行线的判定方法判断即可.【解答】解:∵∠2=∠6(已知),∴a∥b(同位角相等,两直线平行),则能使a∥b的条件是∠2=∠6,故选B【点评】此题考查了平行线的判定,熟练掌握平行线的判定方法是解本题的关键.9.(2016•营口)如图,将一副三角板叠放在一起,使直角的顶点重合于点O,AB∥OC,DC与OB交于点E,则∠DEO的度数为()第15页(共37页)A.85°B.70°C.75°D.60°【分析】由平行线的性质求出∠AOC=120°,再求出∠BOC=30°,然后根据三角形的外角性质即可得出结论.【解答】解:∵A
本文标题:相交线和平行线提高题与常考题型和培优题(含解析)
链接地址:https://www.777doc.com/doc-3750625 .html