您好,欢迎访问三七文档
氮气吸附表面积分析测试方法有多种,其中气体吸附法因其测试原理的科学性,测试过程的可靠性,测试结果的一致性,在国内外各行各业中被广泛采用,并逐渐取代了其它比表面积测试方法,成为公认的最权威测试方法。许多国际标准组织都已将气体吸附法列为比表面积测试标准,如美国ASTM的D3037,国际ISO标准组织的ISO-9277。我国比表面积测试有许多行业标准,其中最具代表性的是国标GB/T19587-2004《气体吸附BET法测定固体物质比表面积》。气体吸附法测定比表面积原理,是依据气体在固体表面的吸附特性,在一定的压力下,被测样品颗粒(吸附剂)表面在超低温下对气体分子(吸附质)具有可逆物理吸附作用,并对应一定压力存在确定的平衡吸附量。通过测定出该平衡吸附量,利用理论模型来等效求出被测样品的比表面积。由于实际颗粒外表面的不规则性,严格来讲,该方法测定的是吸附质分子所能到达的颗粒外表面和内部通孔总表面积之和,如图所示意位置。氮气因其易获得性和良好的可逆吸附特性,成为最常用的吸附质。通过这种方法测定的比表面积我们称之为“等效”比表面积,所谓“等效”的概念是指:样品的比表面积是通过其表面密排包覆(吸附)的氮气分子数量和分子最大横截面积来表征。实际测定出氮气分子在样品表面平衡饱和吸附量(V),通过不同理论模型计算出单层饱和吸附量(Vm),进而得出分子个数,采用表面密排六方模型计算出氮气分子等效最大横截面积(Am),即可求出被测样品的比表面积。Sg:被测样品比表面积(m2/g)Vm:标准状态下氮气分子单层饱和吸附量(ml)Am:氮分子等效最大横截面积(密排六方理论值Am=0.162nm2)W:被测样品质量(g)N:阿佛加德罗常数(6.02x1023)代入上述数据,得到氮吸附法计算比表面积的基本公式:由上式可看出,准确测定样品表面单层饱和吸附量Vm是比表面积测定的关键。固体表面吸附固体表面上的原子或分子与液体一样,受力也是不均匀的,而且不像液体表面分子可以移动,通常它们是定位的。固体表面是不均匀的,即使从宏观上看似乎很光滑,但从原子水平上看是凹凸不平的。同种晶体由于制备、加工不同,会具有不同的表面性质,而且实际晶体的晶面是不完整的,会有晶格缺陷、空位和位错等。正由于固体表面原子受力不对称和表面结构不均匀性,它可以吸附气体或液体分子,使表面自由能下降。而且不同的部位吸附和催化的活性不同。当气体或蒸汽在固体表面被吸附时,固体称为吸附剂,被吸附的气体称为吸附质。常用的吸附剂有:硅胶、分子筛、活性炭等。为了测定固体的比表面,常用的吸附质有:氮气、水蒸气、苯或环己烷的蒸汽等。对气体的吸附量(a或者q)通常有两种表示方法:(2)单位质量的吸附剂所吸附气体物质的量。(1)单位质量的吸附剂所吸附气体的体积(标准状态)。体积要换算成标准状况STP,101325Pa,273.15K,1mol标准状况(STP)气体的体积为22.4dm3mVamxa物理吸附与化学吸附具有如下特点的吸附称为物理吸附:1.吸附力是由固体和气体分子之间的范德华引力产生的,一般比较弱。2.吸附热较小,接近于气体的液化热,一般在几个kJ/mol以下。3.吸附无选择性,任何固体可以吸附任何气体,当然吸附量会有所不同。4.吸附稳定性不高,吸附与解吸速率都很快。5.吸附可以是单分子层的,但也可以是多分子层的。6.吸附不需要活化能,吸附速率并不因温度的升高而变快。总之:物理吸附仅仅是一种物理作用,没有电子转移,没有化学键的生成与破坏,也没有原子重排等。H2在金属镍表面发生物理吸附这时氢没有解离,两原子核间距等于Ni和H的原子半径加上两者的范德华半径。放出的能量ea等于物理吸附热Qp,这数值相当于氢气的液化热。在相互作用的位能曲线上,随着H2分子向Ni表面靠近,相互作用位能下降。到达a点,位能最低,这是物理吸附的稳定状态。如果氢分子通过a点要进一步靠近Ni表面,由于核间的排斥作用,使位能沿ac线升高。具有如下特点的吸附称为化学吸附:1.吸附力是由吸附剂与吸附质分子之间产生的化学键力,一般较强。2.吸附热较高,接近于化学反应热,一般在40kJ/mol以上。3.吸附有选择性,固体表面的活性位只吸附与之可发生反应的气体分子,如酸位吸附碱性分子,反之亦然。化学吸附4.吸附很稳定,一旦吸附,就不易解吸。5.吸附是单分子层的。6.吸附需要活化能,温度升高,吸附和解吸速率加快。总之:化学吸附相当与吸附剂表面分子与吸附质分子发生了化学反应,在红外、紫外-可见光谱中会出现新的特征吸收带。在相互作用的位能线上,H2分子获得解离能DH-H,解离成H原子,处于c'的位置。H2在金属镍表面发生化学吸附随着H原子向Ni表面靠近,位能不断下降,达到b点,这是化学吸附的稳定状态。Ni和H之间的距离等于两者的原子半径之和。能量gb是放出的化学吸附热Qc,这相当于两者之间形成化学键的键能。随着H原子进一步向Ni表面靠近,由于核间斥力,位能沿bc线迅速上升。H2分子在Ni表面的吸附是在物理吸附过程中,提供一点活化能,就可以转变成化学吸附。H2分子从P’到达a点是物理吸附,放出物理吸附热Qp,这时提供活化能Ea,使氢分子到达P点,就解离为氢原子,接下来发生化学吸附。这活化能Ea远小于H2分子的解离能,这就是Ni为什么是一个好的加氢脱氢催化剂的原因。从物理吸附到化学吸附吸附量mVqa)(mxqa保持温度不变,显示吸附量与比压之间的关系曲线称为吸附等温线。纵坐标是吸附量,横坐标是比压p/ps,p是吸附质蒸汽的平衡压力,ps是吸附温度时吸附质的饱和蒸汽压。通常将比压控制在0.3以下,防止毛细凝聚而使结果偏高。从吸附等温线可以反映出吸附剂的表面性质、孔分布以及吸附剂与吸附质之间的相互作用等有关信息。常见的吸附等温线有如下5种类型:(图中p/ps称为比压,ps是吸附质在该温度时的饱和蒸汽压,p为吸附质的压力)(Ⅰ)在2.5nm以下微孔吸附剂上的吸附等温线属于这种类型。例如78K时N2在活性炭上的吸附及水和苯蒸汽在分子筛上的吸附。(Ⅱ)常称为S型等温线。吸附剂孔径大小不一,发生多分子层吸附。在比压接近1时,发生毛细管和孔凝现象。(Ⅲ)这种类型较少见。当吸附剂和吸附质相互作用很弱时会出现这种等温线,如352K时,Br2在硅胶上的吸附。(Ⅳ)多孔吸附剂发生多分子层吸附时会有这种等温线。在比压较高时,有毛细凝聚现象。例如在323K时,苯在氧化铁凝胶上的吸附属于这种类型。(Ⅴ)发生多分子层吸附,有毛细凝聚现象。例如373K时,水汽在活性炭上的吸附属于这种类型。滞后环7.6.3LANGMUIR朗格缪尔单分子层吸附等温式Langmuir吸附等温式描述了吸附量与被吸附蒸汽压力之间的定量关系。他在推导该公式的过程引入了两个重要假设:(1)吸附是单分子层的;(2)固体表面是均匀的,被吸附分子之间无相互作用。设:表面覆盖度q=V/VmVm为吸满单分子层的体积则空白表面为(1-q)V为吸附体积达到平衡时,吸附与脱附速率相等。r(吸附)=kap(1-q)r(脱附)=kdqr(吸附)=kap(1-q)r(脱附)=kdq=kap(1-q)=kdq设b=ka/kd这公式称为Langmuir吸附等温式,式中b称为吸附系数,它的大小代表了固体表面吸附气体能力的强弱程度。bpbp1qaaVVmq分母中为饱和吸附量;完全覆盖以q对p作图,得:1.当p很小,或吸附很弱时,bp1,q=bp,q与p成线性关系。2.当p很大或吸附很强时,bp1,q=1,q与p无关,吸附已铺满单分子层。3.当压力适中,qpm,m介于0与1之间。bpbp1q重排后可得:这是Langmuir吸附公式的又一表示形式。用实验数据,以p/V~p作图得一直线,从斜率和截距求出吸附系数b和铺满单分子层的气体体积Vm。bpbpVVbpbpm11或者qmmVpbVVp1习题:P353,7-10要求使用坐标纸或者计算器程序.m为吸附剂质量Vm是一个重要参数。从吸附质分子截面积Am,可计算吸附剂的总表面积S和比表面S(比)。mANVSmAm0224.0比
本文标题:氮气吸附-2
链接地址:https://www.777doc.com/doc-3770508 .html